Skip to main content

2015 | OriginalPaper | Buchkapitel

The Ring Amplifier: Scalable Amplification with Ring Oscillators

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ring amplification is a technique for performing efficient amplification in nanoscale CMOS technologies. By using a cascade of dynamically stabilized inverter stages to perform accurate amplification, ring amplifiers are able to leverage the key benefits of technology scaling, resulting in excellent efficiency and performance. A generalized view of basic small-signal theory is first presented, followed by a deeper discussion of the time-domain operation of a ringamp in the context of a specific ringamp structure. We conclude with a survey of existing ringamp implementations and techniques reported in literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Jonsson, “On cmos scaling and a/d-converter performance,” in NORCHIP, 2010, nov. 2010, pp. 1–4. B. Jonsson, “On cmos scaling and a/d-converter performance,” in NORCHIP, 2010, nov. 2010, pp. 1–4.
3.
Zurück zum Zitat M. Shrivastava, R. Mehta, S. Gupta, N. Agrawal, M. Baghini, D. Sharma, T. Schulz, K. Arnim, W. Molzer, H. Gossner, and V. Rao, “Toward system on chip (soc) development using finfet technology: Challenges, solutions, process co-development and optimization guidelines,” Electron Devices, IEEE Transactions on, vol. 58, no. 6, pp. 1597–1607, june 2011. M. Shrivastava, R. Mehta, S. Gupta, N. Agrawal, M. Baghini, D. Sharma, T. Schulz, K. Arnim, W. Molzer, H. Gossner, and V. Rao, “Toward system on chip (soc) development using finfet technology: Challenges, solutions, process co-development and optimization guidelines,” Electron Devices, IEEE Transactions on, vol. 58, no. 6, pp. 1597–1607, june 2011.
4.
Zurück zum Zitat J. Fiorenza, T. Sepke, P. Holloway, C. Sodini, and H.-S. Lee, “Comparator-based switched-capacitor circuits for scaled cmos technologies,” Solid-State Circuits, IEEE Journal of, vol. 41, no. 12, pp. 2658 –2668, dec. 2006. J. Fiorenza, T. Sepke, P. Holloway, C. Sodini, and H.-S. Lee, “Comparator-based switched-capacitor circuits for scaled cmos technologies,” Solid-State Circuits, IEEE Journal of, vol. 41, no. 12, pp. 2658 –2668, dec. 2006.
5.
Zurück zum Zitat L. Brooks and H.-S. Lee, “A 12b, 50 ms/s, fully differential zero-crossing based pipelined adc,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 12, pp. 3329–3343, dec. 2009. L. Brooks and H.-S. Lee, “A 12b, 50 ms/s, fully differential zero-crossing based pipelined adc,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 12, pp. 3329–3343, dec. 2009.
6.
Zurück zum Zitat H. Iwai, “Cmos scaling towards its limits,” in Solid-State and Integrated Circuit Technology, 1998. Proceedings. 1998 5th International Conference on, 1998, pp. 31–34. H. Iwai, “Cmos scaling towards its limits,” in Solid-State and Integrated Circuit Technology, 1998. Proceedings. 1998 5th International Conference on, 1998, pp. 31–34.
7.
Zurück zum Zitat B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. Moon, “Ring amplifiers for switched capacitor circuits,” Solid-State Circuits, IEEE Journal of, vol. 47, no. 12, pp. 2928–2942, Dec 2012. B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. Moon, “Ring amplifiers for switched capacitor circuits,” Solid-State Circuits, IEEE Journal of, vol. 47, no. 12, pp. 2928–2942, Dec 2012.
8.
Zurück zum Zitat B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. Moon, “A 61.5db sndr pipelined adc using simple highly-scalable ring amplifiers,” in VLSI Circuits (VLSIC), 2012 Symposium on, June 2012, pp. 32–33. B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. Moon, “A 61.5db sndr pipelined adc using simple highly-scalable ring amplifiers,” in VLSI Circuits (VLSIC), 2012 Symposium on, June 2012, pp. 32–33.
9.
Zurück zum Zitat Y. Lim and F. P. Flynn, “A 100 ms/s, 10.5-bit, 2.46mw comparator-less pipeline adc using self-biased ring amplifiers,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, feb. 2014. Y. Lim and F. P. Flynn, “A 100 ms/s, 10.5-bit, 2.46mw comparator-less pipeline adc using self-biased ring amplifiers,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, feb. 2014.
10.
Zurück zum Zitat B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. Moon, “Ring amplifiers for switched-capacitor circuits,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, Feb 2012, pp. 460–462. B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. Moon, “Ring amplifiers for switched-capacitor circuits,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, Feb 2012, pp. 460–462.
11.
Zurück zum Zitat B. Hershberg and U. Moon, “A 75.9db-sndr 2.96mw 29fj/conv-step ringamp-only pipelined adc,” in VLSI Circuits (VLSIC), 2013 Symposium on, June 2013, pp. C94–C95. B. Hershberg and U. Moon, “A 75.9db-sndr 2.96mw 29fj/conv-step ringamp-only pipelined adc,” in VLSI Circuits (VLSIC), 2013 Symposium on, June 2013, pp. C94–C95.
12.
Zurück zum Zitat B. Hershberg, S. Weaver, and U. Moon, “Design of a split-cls pipelined adc with full signal swing using an accurate but fractional signal swing opamp,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 12, pp. 2620–2630, dec. 2010. B. Hershberg, S. Weaver, and U. Moon, “Design of a split-cls pipelined adc with full signal swing using an accurate but fractional signal swing opamp,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 12, pp. 2620–2630, dec. 2010.
13.
Zurück zum Zitat M. Straayer and M. Perrott, “A 12-bit, 10-mhz bandwidth, continuous-time ΣΔ adc with a 5-bit, 950-ms/s vco-based quantizer,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 4, pp. 805–814, April 2008. M. Straayer and M. Perrott, “A 12-bit, 10-mhz bandwidth, continuous-time ΣΔ adc with a 5-bit, 950-ms/s vco-based quantizer,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 4, pp. 805–814, April 2008.
Metadaten
Titel
The Ring Amplifier: Scalable Amplification with Ring Oscillators
verfasst von
Benjamin Hershberg
Un-Ku Moon
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-07938-7_18

Neuer Inhalt