Skip to main content
Erschienen in: Cellulose 6/2015

01.12.2015 | Original Paper

The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability

verfasst von: Fredrik Aldaeus, Karolina Larsson, Jasna Stevanic Srndovic, Mikaela Kubat, Katarina Karlström, Ausra Peciulyte, Lisbeth Olsson, Per Tomas Larsson

Erschienen in: Cellulose | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The enzymatic hydrolysability of three industrial pulps, five lab made pulps, and one microcrystalline cellulose powder was assessed using commercial cellulolytic enzymes. To gain insight into the factors that influence the hydrolysability, a thorough characterization of the samples was done, including their chemical properties (cellulose content, hemicellulose content, lignin content, and kappa number), their macromolecular properties (peak molar mass, number-average molar mass, weight-average molar mass, polydispersity, and limiting viscosity) and their supramolecular properties (fibre saturation point, specific surface area, average pore size, and crystallinity). The hydrolysability was assessed by determination of initial conversion rate and final conversion yield, with conversion yield defined as the amount of glucose in solution per unit of glucose in the substrate. Multivariate data analysis revealed that for the investigated samples the conversion of cellulose to glucose was mainly dependent on the supramolecular properties, such as specific surface area and average pore size. The molar mass distribution, the crystallinity, and the lignin content of the pulps had no significant effect on the hydrolysability of the investigated samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. PNAS 111:6287–6292CrossRef Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. PNAS 111:6287–6292CrossRef
Zurück zum Zitat Andersen N (2007) Enzymatic hydrolysis of cellulose—experimental and modeling studies. Doctoral thesis, Biocetrum-DTU, Technical University of Denmark, Denmark Andersen N (2007) Enzymatic hydrolysis of cellulose—experimental and modeling studies. Doctoral thesis, Biocetrum-DTU, Technical University of Denmark, Denmark
Zurück zum Zitat Arantes V, Gourlay K, Saddler JS (2014) The enzymatic hydrolysis of pretreated pulp fibers predominantly involves “peeling/erosion” modes of action. Biotechnol Biofuels 7:87CrossRef Arantes V, Gourlay K, Saddler JS (2014) The enzymatic hydrolysis of pretreated pulp fibers predominantly involves “peeling/erosion” modes of action. Biotechnol Biofuels 7:87CrossRef
Zurück zum Zitat Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulose kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRef Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulose kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRef
Zurück zum Zitat Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209CrossRef Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209CrossRef
Zurück zum Zitat Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis–Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Appl Biochem Biotechnol 112:173–184CrossRef Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis–Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Appl Biochem Biotechnol 112:173–184CrossRef
Zurück zum Zitat Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:186–1102CrossRef Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:186–1102CrossRef
Zurück zum Zitat Cannella D, Hsieh C-W, Felby C, Jørgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26CrossRef Cannella D, Hsieh C-W, Felby C, Jørgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26CrossRef
Zurück zum Zitat Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93 Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93
Zurück zum Zitat Chauve M, Barre L, Tapin-Lingua S, da Silva PD, Decottignes D, Perez S, Lopes Ferreira N (2012) Evolution and impact of cellulose architecture during enzymatic hydrolysis by fungal cellulases. Adv Biosci Biotechnol 4:1095–1109CrossRef Chauve M, Barre L, Tapin-Lingua S, da Silva PD, Decottignes D, Perez S, Lopes Ferreira N (2012) Evolution and impact of cellulose architecture during enzymatic hydrolysis by fungal cellulases. Adv Biosci Biotechnol 4:1095–1109CrossRef
Zurück zum Zitat Converse AO, Ooshima H, Burns DS (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl Biochem Biotechnol 24(25):67–73CrossRef Converse AO, Ooshima H, Burns DS (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl Biochem Biotechnol 24(25):67–73CrossRef
Zurück zum Zitat Drechsler U, Radosta S, Waltraud Vorwerg W (2000) Characterization of cellulose in solvent mixtures with N-methylmorpholine-N-oxide by static light scattering. Macromol Chem Phys 201:2023–2030CrossRef Drechsler U, Radosta S, Waltraud Vorwerg W (2000) Characterization of cellulose in solvent mixtures with N-methylmorpholine-N-oxide by static light scattering. Macromol Chem Phys 201:2023–2030CrossRef
Zurück zum Zitat Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997CrossRef Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997CrossRef
Zurück zum Zitat Foston M, Hubbell CA, Samuel R, Jung S, Fan H, Ding SY, Zeng Y, Jawdy S, Davis M, Sykes R, Gjersing E, Tuskan GA, Kalluri U, Ragauskas AJ (2011) Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy Environ Sci 4:4962–4971CrossRef Foston M, Hubbell CA, Samuel R, Jung S, Fan H, Ding SY, Zeng Y, Jawdy S, Davis M, Sykes R, Gjersing E, Tuskan GA, Kalluri U, Ragauskas AJ (2011) Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy Environ Sci 4:4962–4971CrossRef
Zurück zum Zitat Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3:155–160CrossRef Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3:155–160CrossRef
Zurück zum Zitat Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126CrossRef Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126CrossRef
Zurück zum Zitat Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRef Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRef
Zurück zum Zitat Ibbett R, Gaddipati S, Hill S, Tucker G (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestability. Biotechnol Biofuels 6:33CrossRef Ibbett R, Gaddipati S, Hill S, Tucker G (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestability. Biotechnol Biofuels 6:33CrossRef
Zurück zum Zitat Ioelovich M, Morag E (2011) Effect of cellulose structure on enzymatic hydrolysis. BioResources 6:2818–2835 Ioelovich M, Morag E (2011) Effect of cellulose structure on enzymatic hydrolysis. BioResources 6:2818–2835
Zurück zum Zitat Kihlman M, Aldaeus F, Chedid F, Germgård U (2011) Effect of various pulp properties on the solubility of cellulose in sodium hydroxide solutions. Holzforschung 66:601–606 Kihlman M, Aldaeus F, Chedid F, Germgård U (2011) Effect of various pulp properties on the solubility of cellulose in sodium hydroxide solutions. Holzforschung 66:601–606
Zurück zum Zitat Köhnke T, Östlund Å, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution patterns on adsorption characteristics. Biomacromolecules 12:2633–2641CrossRef Köhnke T, Östlund Å, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution patterns on adsorption characteristics. Biomacromolecules 12:2633–2641CrossRef
Zurück zum Zitat Larsson PT, Svensson A, Wågberg L (2013) A new, robust method for measuring average fibre wall pore sizes in cellulose I rich plant fibre walls. Cellulose 20:623–631CrossRef Larsson PT, Svensson A, Wågberg L (2013) A new, robust method for measuring average fibre wall pore sizes in cellulose I rich plant fibre walls. Cellulose 20:623–631CrossRef
Zurück zum Zitat Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286:11195–11201CrossRef Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286:11195–11201CrossRef
Zurück zum Zitat Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816CrossRef Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816CrossRef
Zurück zum Zitat Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710CrossRef Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710CrossRef
Zurück zum Zitat Ohmine K, Ooshima H, Harano Y (1983) Kinetic study on enzymatic hydrolysis of cellulose by cellulose from Trichoderma viride. Biotechnol Bioeng 15:2041–2053CrossRef Ohmine K, Ooshima H, Harano Y (1983) Kinetic study on enzymatic hydrolysis of cellulose by cellulose from Trichoderma viride. Biotechnol Bioeng 15:2041–2053CrossRef
Zurück zum Zitat Peciulyte A, Karlström K, Larsson PT, Olsson L (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8:56CrossRef Peciulyte A, Karlström K, Larsson PT, Olsson L (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8:56CrossRef
Zurück zum Zitat Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRef Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRef
Zurück zum Zitat Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssonen E, Bhatia A, Ward M, Penttila M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211CrossRef Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssonen E, Bhatia A, Ward M, Penttila M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211CrossRef
Zurück zum Zitat Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueenmason SJ, Shieh M, Cosgrove DJ (1995) molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci USA 92:9245–9249CrossRef Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueenmason SJ, Shieh M, Cosgrove DJ (1995) molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci USA 92:9245–9249CrossRef
Zurück zum Zitat Sin G, Meyer AS, Gernaey KV (2010) Assessing reliability of cellulose hydrolysis models to support biofuel process design—identifiability and uncertainty analysis. Comput Chem Eng 34:1385–1392CrossRef Sin G, Meyer AS, Gernaey KV (2010) Assessing reliability of cellulose hydrolysis models to support biofuel process design—identifiability and uncertainty analysis. Comput Chem Eng 34:1385–1392CrossRef
Zurück zum Zitat Sinitsyn AP, Gusakov AV, Vlasenko EY (1991) Effect of structural and physio-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 30:43–59CrossRef Sinitsyn AP, Gusakov AV, Vlasenko EY (1991) Effect of structural and physio-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 30:43–59CrossRef
Zurück zum Zitat Stone JE, Scallan AM (1967) The effect of component removal upon the porous structure of the cell wall of wood II—swelling in water and the fibre saturation point. Tappi 50:496–501 Stone JE, Scallan AM (1967) The effect of component removal upon the porous structure of the cell wall of wood II—swelling in water and the fibre saturation point. Tappi 50:496–501
Zurück zum Zitat Strunk P, Eliasson B, Hägglund C, Agnemo R (2011) The influence of properties in cellulose pulps on the reactivity in viscose manufacturing. Nord Pulp Pap Res J 26:81–89CrossRef Strunk P, Eliasson B, Hägglund C, Agnemo R (2011) The influence of properties in cellulose pulps on the reactivity in viscose manufacturing. Nord Pulp Pap Res J 26:81–89CrossRef
Zurück zum Zitat Taneda D, Ueno Y, Ikeo M, Okino S (2012) Characteristics of enzyme hydrolysis of cellulose under static conditions. Bioresour Technol 121:154–160CrossRef Taneda D, Ueno Y, Ikeo M, Okino S (2012) Characteristics of enzyme hydrolysis of cellulose under static conditions. Bioresour Technol 121:154–160CrossRef
Zurück zum Zitat Wald S, Wilke CR, Blanch HW (1984) Kinetics of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 26:221–230CrossRef Wald S, Wilke CR, Blanch HW (1984) Kinetics of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 26:221–230CrossRef
Zurück zum Zitat Wang W, Kang L, Wei H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164:1139–1149CrossRef Wang W, Kang L, Wei H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164:1139–1149CrossRef
Zurück zum Zitat Wang G, Post WP, Mayes MA, Frerichs JT, Sindhu J (2012) Parameter estimation for models of lignolytic enzyme kinetics. Soil Biol Biochem 48:28–38CrossRef Wang G, Post WP, Mayes MA, Frerichs JT, Sindhu J (2012) Parameter estimation for models of lignolytic enzyme kinetics. Soil Biol Biochem 48:28–38CrossRef
Zurück zum Zitat Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–450CrossRef Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–450CrossRef
Zurück zum Zitat Ye Z, Berson RE (2011) Kinetic modeling of cellulose hydrolysis with first order inactivation of adsorbed cellulase. Bioresour Technol 102:11194–11199CrossRef Ye Z, Berson RE (2011) Kinetic modeling of cellulose hydrolysis with first order inactivation of adsorbed cellulase. Bioresour Technol 102:11194–11199CrossRef
Metadaten
Titel
The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability
verfasst von
Fredrik Aldaeus
Karolina Larsson
Jasna Stevanic Srndovic
Mikaela Kubat
Katarina Karlström
Ausra Peciulyte
Lisbeth Olsson
Per Tomas Larsson
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2015
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0766-0

Weitere Artikel der Ausgabe 6/2015

Cellulose 6/2015 Zur Ausgabe