Skip to main content
Erschienen in: Journal of Materials Science 11/2018

08.03.2018 | Computation

Theoretical design of sandwich two-dimensional structures for photocatalysts and nano-optoelectronic devices

verfasst von: Qiming Yu, Wenzhe Shan, Hongming Wang

Erschienen in: Journal of Materials Science | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, three series of heterostructures of 2D transition metal dichalcogenides (including MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2) sandwiched by graphene (Gr), h-BN, and g-C3N4, which will be referred to as Gr sandwich heterostructures (SHS), h-BN-SHS, and g-C3N4-SHS in the rest of this paper, have been systematically studied firstly by using first-principle calculations. Gr-SHS are found to hold stable structures with an expanded band gap when MoSe2 and WSe2 are used as interlayers, indicating potential applications to Hall switch sensors. With the same type of interlayers, the stable h-BN-SHS shows additionally good response to visible light. In addition to good response to the visible light, effective electron–hole separation is also observed in g-C3N4-SHS. Such properties suggest structures in this sandwich type may be applied in plentiful areas, such as photocatalyst and solar cells. Moreover, the number and density of catalytically active sites in SHS may be dramatically increased. Consequently, we hope our findings could provide guidance for both the design of advanced materials and the corresponding nano-devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Georgiou T, Jalil R, Belle BD et al (2013) Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100CrossRef Georgiou T, Jalil R, Belle BD et al (2013) Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100CrossRef
2.
Zurück zum Zitat Cai Y, Zhang G, Zhang YW (2013) Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J Am Chem Soc 136:6269–6275CrossRef Cai Y, Zhang G, Zhang YW (2013) Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J Am Chem Soc 136:6269–6275CrossRef
3.
Zurück zum Zitat Ke Q, Tang C, Liu Y, Wang J (2014) Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors. Mater Res Express 1:025015CrossRef Ke Q, Tang C, Liu Y, Wang J (2014) Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors. Mater Res Express 1:025015CrossRef
4.
Zurück zum Zitat Ke Q, Liu Y, Liu H, Zhang Y, Hu Y, Wang J (2014) Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv 4:26398–26406CrossRef Ke Q, Liu Y, Liu H, Zhang Y, Hu Y, Wang J (2014) Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv 4:26398–26406CrossRef
5.
Zurück zum Zitat Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18CrossRef Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18CrossRef
6.
Zurück zum Zitat Ferrari AC, Bonaccorso F, Fal’Ko V et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598CrossRef Ferrari AC, Bonaccorso F, Fal’Ko V et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598CrossRef
7.
Zurück zum Zitat Zheng Y, Lin L, Wang B, Wang X (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem 54:12868–12884CrossRef Zheng Y, Lin L, Wang B, Wang X (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem 54:12868–12884CrossRef
8.
Zurück zum Zitat Liu J, Liu Y, Liu N et al (2015) Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974CrossRef Liu J, Liu Y, Liu N et al (2015) Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974CrossRef
9.
Zurück zum Zitat Carlsson JM (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. J Nat Mater 8:76CrossRef Carlsson JM (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. J Nat Mater 8:76CrossRef
10.
Zurück zum Zitat Miao X, Tongay S, Petterson MK et al (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745CrossRef Miao X, Tongay S, Petterson MK et al (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745CrossRef
11.
Zurück zum Zitat Ji L, Rao M, Zheng H et al (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522CrossRef Ji L, Rao M, Zheng H et al (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522CrossRef
12.
Zurück zum Zitat Lunghao HB, Wu FY, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687CrossRef Lunghao HB, Wu FY, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687CrossRef
13.
Zurück zum Zitat Xiao J, Mei D, Li X et al (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071CrossRef Xiao J, Mei D, Li X et al (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071CrossRef
14.
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537CrossRef Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537CrossRef
15.
Zurück zum Zitat Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863CrossRef Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863CrossRef
16.
Zurück zum Zitat Wang Y, Wu Y, Huang Y et al (2011) Preventing graphene sheets from restacking for high-capacitance performance. J Phys Chem C 115:23192–23197CrossRef Wang Y, Wu Y, Huang Y et al (2011) Preventing graphene sheets from restacking for high-capacitance performance. J Phys Chem C 115:23192–23197CrossRef
17.
Zurück zum Zitat Jalili R, Aminorroayayamini S, Benedetti TM et al (2016) Processable 2D materials beyond graphene: MoS2 liquid crystals and fibres. Nanoscale 8:16862CrossRef Jalili R, Aminorroayayamini S, Benedetti TM et al (2016) Processable 2D materials beyond graphene: MoS2 liquid crystals and fibres. Nanoscale 8:16862CrossRef
18.
Zurück zum Zitat Hogan BT, Kovalska E, Craciun MF, Baldycheva A (2017) 2D material liquid crystals for optoelectronics and photonics. J Mater Chem C 5:11185–11195CrossRef Hogan BT, Kovalska E, Craciun MF, Baldycheva A (2017) 2D material liquid crystals for optoelectronics and photonics. J Mater Chem C 5:11185–11195CrossRef
19.
Zurück zum Zitat Narayan R, Kim JE, Kim JY, Lee KE, Kim SO (2016) Graphene oxide liquid crystals: discovery, evolution and applications. Adv Mater 28:3045CrossRef Narayan R, Kim JE, Kim JY, Lee KE, Kim SO (2016) Graphene oxide liquid crystals: discovery, evolution and applications. Adv Mater 28:3045CrossRef
20.
Zurück zum Zitat Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LMK, Morpurgo AF (2007) Bipolar supercurrent in graphene. Nature 446:56–59CrossRef Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LMK, Morpurgo AF (2007) Bipolar supercurrent in graphene. Nature 446:56–59CrossRef
21.
Zurück zum Zitat Profeta G, Calandra M, Mauri F (2012) Phonon-mediated superconductivity in graphene by lithium deposition. Nat Phys 8:131–134CrossRef Profeta G, Calandra M, Mauri F (2012) Phonon-mediated superconductivity in graphene by lithium deposition. Nat Phys 8:131–134CrossRef
22.
Zurück zum Zitat Wang X, Xia F (2015) Van der Waals heterostructures: stacked 2D materials shed light. Nat Mater 14:264CrossRef Wang X, Xia F (2015) Van der Waals heterostructures: stacked 2D materials shed light. Nat Mater 14:264CrossRef
23.
Zurück zum Zitat Zhu X, Monahan NR, Gong Z, Zhu H, Williams KW, Nelson CA (2015) Correction to “charge transfer excitons at van der Waals interfaces”. J Am Chem Soc 137:14230CrossRef Zhu X, Monahan NR, Gong Z, Zhu H, Williams KW, Nelson CA (2015) Correction to “charge transfer excitons at van der Waals interfaces”. J Am Chem Soc 137:14230CrossRef
24.
Zurück zum Zitat Zhang ZY, Si MS, Peng SL, Zhang F, Wang YH, Xue DS (2015) Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS2: a first principles calculation. J Solid State Chem 231:64–69CrossRef Zhang ZY, Si MS, Peng SL, Zhang F, Wang YH, Xue DS (2015) Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS2: a first principles calculation. J Solid State Chem 231:64–69CrossRef
25.
Zurück zum Zitat You B, Wang X, Zheng Z, Mi W (2016) Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. Phys Chem Chem Phys 18:7381–7388CrossRef You B, Wang X, Zheng Z, Mi W (2016) Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. Phys Chem Chem Phys 18:7381–7388CrossRef
26.
Zurück zum Zitat Peng Q, Wang Z, Sa B, Wu B, Sun Z (2016) Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep 6:31994CrossRef Peng Q, Wang Z, Sa B, Wu B, Sun Z (2016) Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep 6:31994CrossRef
27.
Zurück zum Zitat Che W, Cheng W, Yao T et al (2017) Fast photoelectron transfer in Cring–C3N4 plane-heterostructural nanosheets for overall water splitting. J Am Chem Soc 139:3021CrossRef Che W, Cheng W, Yao T et al (2017) Fast photoelectron transfer in Cring–C3N4 plane-heterostructural nanosheets for overall water splitting. J Am Chem Soc 139:3021CrossRef
28.
Zurück zum Zitat Pierucci D, Henck H, Avila J et al (2016) Band alignment and minigaps in monolayer MoS2-graphene van der Waals heterostructures. Nano Lett 16:4054–4061CrossRef Pierucci D, Henck H, Avila J et al (2016) Band alignment and minigaps in monolayer MoS2-graphene van der Waals heterostructures. Nano Lett 16:4054–4061CrossRef
29.
Zurück zum Zitat Hong YJ, Yang JW, Lee WH, Ruoff RS, Kim KS, Fukui T (2013) Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs. Adv Mater 25:6914CrossRef Hong YJ, Yang JW, Lee WH, Ruoff RS, Kim KS, Fukui T (2013) Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs. Adv Mater 25:6914CrossRef
30.
Zurück zum Zitat Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 11:218CrossRef Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 11:218CrossRef
31.
Zurück zum Zitat Zhang K, Zhang T, Cheng G et al (2016) Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10:3852CrossRef Zhang K, Zhang T, Cheng G et al (2016) Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10:3852CrossRef
32.
Zurück zum Zitat Lu N, Guo H, Li L et al (2013) MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. Nanoscale 6:2879CrossRef Lu N, Guo H, Li L et al (2013) MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. Nanoscale 6:2879CrossRef
33.
Zurück zum Zitat Wang F, Yin L, Wang ZX et al (2016) Configuration dependent electrically tunable Van der Waals heterostructures based on MoTe2/MoS2. Adv Funct Mater 26:5499–5506CrossRef Wang F, Yin L, Wang ZX et al (2016) Configuration dependent electrically tunable Van der Waals heterostructures based on MoTe2/MoS2. Adv Funct Mater 26:5499–5506CrossRef
34.
Zurück zum Zitat Zhang Z, Zeng XC, Guo W (2011) Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism. J Am Chem Soc 133:14831CrossRef Zhang Z, Zeng XC, Guo W (2011) Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism. J Am Chem Soc 133:14831CrossRef
35.
Zurück zum Zitat Liu F, Chow WL, He X et al (2015) Van der Waals p–n junction based on an organic–inorganic heterostructure. Adv Funct Mater 25:5865–5871CrossRef Liu F, Chow WL, He X et al (2015) Van der Waals pn junction based on an organic–inorganic heterostructure. Adv Funct Mater 25:5865–5871CrossRef
36.
Zurück zum Zitat Gigot A, Fontana M, Serrapede M et al (1944) Mixed 1T-2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance. ACS Appl Mater Interfaces 8:32842–32852CrossRef Gigot A, Fontana M, Serrapede M et al (1944) Mixed 1T-2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance. ACS Appl Mater Interfaces 8:32842–32852CrossRef
37.
Zurück zum Zitat Kwak JY, Hwang J, Calderon B, Alsalman H, Spencer MG (2016) Long wavelength optical response of graphene-MoS2 heterojunction. Appl Phys Lett 108:666 Kwak JY, Hwang J, Calderon B, Alsalman H, Spencer MG (2016) Long wavelength optical response of graphene-MoS2 heterojunction. Appl Phys Lett 108:666
38.
Zurück zum Zitat Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
39.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197CrossRef Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197CrossRef
40.
Zurück zum Zitat Becton M, Zhang L, Wang X (2013) Effects of surface dopants on graphene folding by molecular simulations. Chem Phys Lett 584:135–141CrossRef Becton M, Zhang L, Wang X (2013) Effects of surface dopants on graphene folding by molecular simulations. Chem Phys Lett 584:135–141CrossRef
41.
Zurück zum Zitat Baimova JA, Dmitriev SV, Zhou K, Savin AV (2012) Unidirectional ripples in strained graphene nanoribbons with clamped edges at zero and finite temperatures. Phys Rev B Condens Matter 86:47–52CrossRef Baimova JA, Dmitriev SV, Zhou K, Savin AV (2012) Unidirectional ripples in strained graphene nanoribbons with clamped edges at zero and finite temperatures. Phys Rev B Condens Matter 86:47–52CrossRef
42.
Zurück zum Zitat Seol JH, Jo I, Moore AL et al (2010) Two-dimensional phonon transport in supported graphene. Science 328:213–216CrossRef Seol JH, Jo I, Moore AL et al (2010) Two-dimensional phonon transport in supported graphene. Science 328:213–216CrossRef
43.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
44.
Zurück zum Zitat Liu B, Baimova JA, Dmitriev SV, Wang X, Zhu H, Zhou K (2013) Discrete breathers in hydrogenated graphene. J Phys D Appl Phys 46:305302CrossRef Liu B, Baimova JA, Dmitriev SV, Wang X, Zhu H, Zhou K (2013) Discrete breathers in hydrogenated graphene. J Phys D Appl Phys 46:305302CrossRef
45.
Zurück zum Zitat Zhang L, Zeng X, Wang X (2013) Programmable hydrogenation of graphene for novel nanocages. Sci Rep 3:3162CrossRef Zhang L, Zeng X, Wang X (2013) Programmable hydrogenation of graphene for novel nanocages. Sci Rep 3:3162CrossRef
46.
Zurück zum Zitat Becton M, Wang X (2014) Thermal gradients on graphene to drive nanoflake motion. J Chem Theory Comput 10:722CrossRef Becton M, Wang X (2014) Thermal gradients on graphene to drive nanoflake motion. J Chem Theory Comput 10:722CrossRef
47.
Zurück zum Zitat Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Progress Mater Sci 73:44–126CrossRef Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Progress Mater Sci 73:44–126CrossRef
48.
Zurück zum Zitat Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404CrossRef Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404CrossRef
49.
Zurück zum Zitat Gannett W, Regan W, Watanabe K, Taniguchi T, Crommie MF, Zettl A (2011) Boron nitride substrates for high mobility chemical vapor deposited graphene. Appl Phys Lett 98:183CrossRef Gannett W, Regan W, Watanabe K, Taniguchi T, Crommie MF, Zettl A (2011) Boron nitride substrates for high mobility chemical vapor deposited graphene. Appl Phys Lett 98:183CrossRef
50.
Zurück zum Zitat Kim KK, Hsu A, Jia X et al (2012) Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6:8583–8590CrossRef Kim KK, Hsu A, Jia X et al (2012) Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6:8583–8590CrossRef
51.
Zurück zum Zitat Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Cheminform 317:932–934 Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Cheminform 317:932–934
52.
Zurück zum Zitat Watanabe K, Taniguchi T, Miya K et al (2011) Hexagonal boron nitride as a new ultraviolet luminescent material and its application—fluorescence properties of hBN single-crystal powder. Int J Appl Ceram Technol 8:849–852CrossRef Watanabe K, Taniguchi T, Miya K et al (2011) Hexagonal boron nitride as a new ultraviolet luminescent material and its application—fluorescence properties of hBN single-crystal powder. Int J Appl Ceram Technol 8:849–852CrossRef
53.
Zurück zum Zitat Xu Y, Gao SP (2012) Band gap of C3N4 in the GW approximation. Int J Hydrog Energy 37:11072–11080CrossRef Xu Y, Gao SP (2012) Band gap of C3N4 in the GW approximation. Int J Hydrog Energy 37:11072–11080CrossRef
54.
Zurück zum Zitat Xu M, Han L, Dong S (2013) Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl Mater Interfaces 5:12533–12540CrossRef Xu M, Han L, Dong S (2013) Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl Mater Interfaces 5:12533–12540CrossRef
55.
Zurück zum Zitat Liu B, Meng F, Reddy CD et al (2015) Thermal transport in a graphene–MoS2 bilayer heterostructure: a molecular dynamics study. RSC Adv 5:29193–29200CrossRef Liu B, Meng F, Reddy CD et al (2015) Thermal transport in a graphene–MoS2 bilayer heterostructure: a molecular dynamics study. RSC Adv 5:29193–29200CrossRef
56.
Zurück zum Zitat Shih CJ, Wang QH, Son Y, Jin Z, Blankschtein D, Strano MS (2014) Tuning on-off current ratio and field-effect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation. ACS Nano 8:5790–5798CrossRef Shih CJ, Wang QH, Son Y, Jin Z, Blankschtein D, Strano MS (2014) Tuning on-off current ratio and field-effect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation. ACS Nano 8:5790–5798CrossRef
57.
Zurück zum Zitat Elder RM, Neupane MR, Chantawansri TL (2015) Stacking order dependent mechanical properties of graphene/MoS2 bilayer and trilayer heterostructures. Appl Phys Lett 107:135CrossRef Elder RM, Neupane MR, Chantawansri TL (2015) Stacking order dependent mechanical properties of graphene/MoS2 bilayer and trilayer heterostructures. Appl Phys Lett 107:135CrossRef
58.
Zurück zum Zitat Bertolazzi S, Krasnozhon D, Kis A (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7:3246–3252CrossRef Bertolazzi S, Krasnozhon D, Kis A (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7:3246–3252CrossRef
59.
Zurück zum Zitat Liu X, Li Z (2015) Electric field and strain effect on graphene-MoS2 hybrid structure: Ab initio calculations. J Phys Chem Lett 6:3269–3275CrossRef Liu X, Li Z (2015) Electric field and strain effect on graphene-MoS2 hybrid structure: Ab initio calculations. J Phys Chem Lett 6:3269–3275CrossRef
60.
Zurück zum Zitat Ceballos F, Ju MG, Lane SD, Xiao CZ, Hui Z (2017) Highly efficient and anomalous charge transfer in van der Waals Trilayer semiconductors. Nano Lett 17:1623–1628CrossRef Ceballos F, Ju MG, Lane SD, Xiao CZ, Hui Z (2017) Highly efficient and anomalous charge transfer in van der Waals Trilayer semiconductors. Nano Lett 17:1623–1628CrossRef
61.
Zurück zum Zitat Jo S, Kang D, Shim J et al (2016) A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv Mater 28:4824–4831CrossRef Jo S, Kang D, Shim J et al (2016) A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv Mater 28:4824–4831CrossRef
62.
Zurück zum Zitat Nozaki J, Yu K, Miyata Y et al (2016) Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy. Jpn J Appl Phys 55:06GB01CrossRef Nozaki J, Yu K, Miyata Y et al (2016) Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy. Jpn J Appl Phys 55:06GB01CrossRef
63.
Zurück zum Zitat Aiming Y, Jairo V, Salman K et al (2015) Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett 15:6324CrossRef Aiming Y, Jairo V, Salman K et al (2015) Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett 15:6324CrossRef
64.
Zurück zum Zitat Wang S, Wang X, Warner JH (2015) All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures. ACS Nano 9:5246CrossRef Wang S, Wang X, Warner JH (2015) All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures. ACS Nano 9:5246CrossRef
65.
Zurück zum Zitat Fu L, Sun Y, Wu N et al (2016) Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10:2063CrossRef Fu L, Sun Y, Wu N et al (2016) Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10:2063CrossRef
66.
Zurück zum Zitat Huang Z, He C, Qi X et al (2014) Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations. J Phys D Appl Phys 47:75301–753066CrossRef Huang Z, He C, Qi X et al (2014) Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations. J Phys D Appl Phys 47:75301–753066CrossRef
67.
Zurück zum Zitat Li J, Liu E, Ma Y et al (2016) Synthesis of MoS2/g-C3N4, nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl Surface Sci 364:694–702CrossRef Li J, Liu E, Ma Y et al (2016) Synthesis of MoS2/g-C3N4, nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl Surface Sci 364:694–702CrossRef
68.
Zurück zum Zitat Yan J, Chen Z, Ji H et al (2016) Cover picture: construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light photocatalytic activity and photoelectrochemical activity (Chem. Eur. J. 14/2016). J Chem 22:4764CrossRef Yan J, Chen Z, Ji H et al (2016) Cover picture: construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light photocatalytic activity and photoelectrochemical activity (Chem. Eur. J. 14/2016). J Chem 22:4764CrossRef
69.
Zurück zum Zitat Tian Y, Ge L, Wang K, Chai Y (2014) Synthesis of novel MoS2/g-C3N4, heterojunction photocatalysts with enhanced hydrogen evolution activity. Mater Charact 87:70–73CrossRef Tian Y, Ge L, Wang K, Chai Y (2014) Synthesis of novel MoS2/g-C3N4, heterojunction photocatalysts with enhanced hydrogen evolution activity. Mater Charact 87:70–73CrossRef
70.
Zurück zum Zitat Zhang X, Meng Z, Rao D et al (2016) Efficient band structure tuning, charge separation, and visible-light response in ZrS2-based van der Waals heterostructures. Energy Environ Sci 9:841–849CrossRef Zhang X, Meng Z, Rao D et al (2016) Efficient band structure tuning, charge separation, and visible-light response in ZrS2-based van der Waals heterostructures. Energy Environ Sci 9:841–849CrossRef
71.
Zurück zum Zitat Xu S, Wu Z, Lu H et al (2016) Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater 3:021007CrossRef Xu S, Wu Z, Lu H et al (2016) Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater 3:021007CrossRef
72.
Zurück zum Zitat Huang Z, Qi X, Yang H et al (2015) Band-gap engineering of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field. J Phys D Appl Phys 48(20):205302CrossRef Huang Z, Qi X, Yang H et al (2015) Band-gap engineering of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field. J Phys D Appl Phys 48(20):205302CrossRef
73.
Zurück zum Zitat Viti L, Hu J, Coquillat D et al (2016) Heterostructured hBN-BP-hBN nanodetectors at Terahertz frequencies. Adv Mater 28:7390–7396CrossRef Viti L, Hu J, Coquillat D et al (2016) Heterostructured hBN-BP-hBN nanodetectors at Terahertz frequencies. Adv Mater 28:7390–7396CrossRef
74.
Zurück zum Zitat Tu W, Zhou Y, Liu Q et al (2012) Robust hollow spheres consisting of Alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv Funct Mater 22:1215–1221CrossRef Tu W, Zhou Y, Liu Q et al (2012) Robust hollow spheres consisting of Alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv Funct Mater 22:1215–1221CrossRef
75.
Zurück zum Zitat Yaokawa R, Ohsuna T, Morishita T, Hayasaka Y, Spencer MJS, Nakano H (2016) Monolayer-to-bilayer transformation of silicenes and their structural analysis. Nat Commun 7:10657CrossRef Yaokawa R, Ohsuna T, Morishita T, Hayasaka Y, Spencer MJS, Nakano H (2016) Monolayer-to-bilayer transformation of silicenes and their structural analysis. Nat Commun 7:10657CrossRef
76.
Zurück zum Zitat Chen X, Wu Y, Wu Z et al (2015) High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun 6:7315CrossRef Chen X, Wu Y, Wu Z et al (2015) High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun 6:7315CrossRef
77.
Zurück zum Zitat Wu Z, Xu S, Lu H et al (2016) Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides. Nat Commun 7:12955CrossRef Wu Z, Xu S, Lu H et al (2016) Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides. Nat Commun 7:12955CrossRef
78.
Zurück zum Zitat Massicotte M, Schmidt P, Vialla F, Schädler KG, Reserbatplantey A, Watanabe K et al (2016) Picosecond photoresponse in van der Waals heterostructures. Nat Nanotechnol 11:42CrossRef Massicotte M, Schmidt P, Vialla F, Schädler KG, Reserbatplantey A, Watanabe K et al (2016) Picosecond photoresponse in van der Waals heterostructures. Nat Nanotechnol 11:42CrossRef
79.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) ERRATA: generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRef Perdew JP, Burke K, Ernzerhof M (1996) ERRATA: generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRef
80.
Zurück zum Zitat Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 54:11169CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 54:11169CrossRef
81.
Zurück zum Zitat Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef
82.
Zurück zum Zitat Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B Conds Matter 49:14251CrossRef Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B Conds Matter 49:14251CrossRef
83.
Zurück zum Zitat Kresse G (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter 59:1758–1775CrossRef Kresse G (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter 59:1758–1775CrossRef
84.
Zurück zum Zitat Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. J Angew Chem Int Edn 48:7752–7777CrossRef Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. J Angew Chem Int Edn 48:7752–7777CrossRef
85.
Zurück zum Zitat Jiang H (2011) Structural and electronic properties of ZrX2 and HfX2 (X = S and Se) from first principles calculations. J Chem Phys 134:1 Jiang H (2011) Structural and electronic properties of ZrX2 and HfX2 (X = S and Se) from first principles calculations. J Chem Phys 134:1
86.
Zurück zum Zitat Yuan Y, Gong X, Wang H (2015) The synergistic mechanism of graphene and MoS2 for hydrogen generation: insights from density functional theory. Phys Chem Chem Phys 17:11375–11381CrossRef Yuan Y, Gong X, Wang H (2015) The synergistic mechanism of graphene and MoS2 for hydrogen generation: insights from density functional theory. Phys Chem Chem Phys 17:11375–11381CrossRef
87.
Zurück zum Zitat Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C (2006) Efficiency limits for single-junction and tandem solar cells. J Solar Energy Mater Solar Cells 90:2952–2959CrossRef Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C (2006) Efficiency limits for single-junction and tandem solar cells. J Solar Energy Mater Solar Cells 90:2952–2959CrossRef
Metadaten
Titel
Theoretical design of sandwich two-dimensional structures for photocatalysts and nano-optoelectronic devices
verfasst von
Qiming Yu
Wenzhe Shan
Hongming Wang
Publikationsdatum
08.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2111-0

Weitere Artikel der Ausgabe 11/2018

Journal of Materials Science 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.