Skip to main content
Erschienen in: International Journal of Steel Structures 4/2022

26.06.2022

Theoretical Models for Tie Bar Maximum Axial Force Demand in Composite Plate Shear Walls–Concrete Filled

verfasst von: Erkan Polat

Erschienen in: International Journal of Steel Structures | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents theoretical models developed for the prediction of the maximum axial force demands of tie bars of planar composite plate shear walls–concrete filled (C-PSW/CF). In the development of the theory, a previously benchmarked finite element (FE) wall model was used with some modifications. The results from the FE models were used to demonstrate the formation of the tie bar axial force demands, passive lateral confining pressure, concrete confinement, effectively confined concrete core and to develop theoretical models for the prediction of tie bar maximum force demands. The proposed method accounts for various aspects of wall geometry such as horizontal and vertical tie bar spacings, steel plate thickness, and wall thickness. The predictions of the proposed theoretical models were compared with the predictions of FE analyses by performing a parametric study involving C-PSW/CF having different tie bar spacings, plate thickness, wall thickness, and wall depths. Past experimental research available in the literature were used to evaluate the significance of the theoretical model in predicting tie bar maximum axial force demands. Tie bar axial force demand due to the confinement effect is not currently considered in the design of tie bars and there is no theoretical approach in the literature that considers the effect of confinement on the tie bar axial force demand. The theoretical models presented in this study allow the determination of the maximum axial force demands due to the confinement effect on planar C-PSW/CF tie bars without the need for complex and costly numerical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat AISC (2022). Seismic provisions for structural steel buildings. AISC 341–22, American Institute of Steel Construction, Chicago, IL. AISC (2022). Seismic provisions for structural steel buildings. AISC 341–22, American Institute of Steel Construction, Chicago, IL.
Zurück zum Zitat Alzeni, Y., and Bruneau, M. (2014). Cyclic inelastic behavior of concrete filled sandwich panel walls subjected to in plane flexure. Technical Rep. MCEER, 14–009,, Univ. at Buffalo, the State Univ. of New York, Buffalo, NY, MCEER. Alzeni, Y., and Bruneau, M. (2014). Cyclic inelastic behavior of concrete filled sandwich panel walls subjected to in plane flexure. Technical Rep. MCEER, 14–009,, Univ. at Buffalo, the State Univ. of New York, Buffalo, NY, MCEER.
Zurück zum Zitat Alzeni, Y., & Bruneau, M. (2017). In-plane cyclic testing of concrete-filled sandwich steel panel walls with and without boundary elements. Journal of Structural Engineering, 143(9), 04017115.CrossRef Alzeni, Y., & Bruneau, M. (2017). In-plane cyclic testing of concrete-filled sandwich steel panel walls with and without boundary elements. Journal of Structural Engineering, 143(9), 04017115.CrossRef
Zurück zum Zitat Bhardwaj, S. R., Varma, A. H., & Orbovic, N. (2019). Behavior of steel-plate composite wall piers under biaxial loading. Journal of Structural Engineering, 145(2), 04018252.CrossRef Bhardwaj, S. R., Varma, A. H., & Orbovic, N. (2019). Behavior of steel-plate composite wall piers under biaxial loading. Journal of Structural Engineering, 145(2), 04018252.CrossRef
Zurück zum Zitat Booth, P. N., Varma, A. H., Sener, K. C., & Mori, K. (2015). Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls. Nuclear Engineering and Design, 295, 829–842.CrossRef Booth, P. N., Varma, A. H., Sener, K. C., & Mori, K. (2015). Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls. Nuclear Engineering and Design, 295, 829–842.CrossRef
Zurück zum Zitat Bowerman, H., Gough, M., & King, C. (1999). Bi-Steel design and construction guide. London: British Steel Ltd Scunthorpe. Bowerman, H., Gough, M., & King, C. (1999). Bi-Steel design and construction guide. London: British Steel Ltd Scunthorpe.
Zurück zum Zitat Eom, T.-S., Park, H.-G., Lee, C.-H., Kim, J.-H., & Chang, I.-H. (2009). Behavior of double skin composite wall subjected to in-plane cyclic loading. Journal of Structural Engineering, 135(10), 1239–1249.CrossRef Eom, T.-S., Park, H.-G., Lee, C.-H., Kim, J.-H., & Chang, I.-H. (2009). Behavior of double skin composite wall subjected to in-plane cyclic loading. Journal of Structural Engineering, 135(10), 1239–1249.CrossRef
Zurück zum Zitat Epackachi, S., Nguyen, N. H., Kurt, E. G., Whittaker, A. S., & Varma, A. H. (2014). In-plane seismic behavior of rectangular steel-plate composite wall piers. Journal of Structural Engineering, 141(7), 04014176.CrossRef Epackachi, S., Nguyen, N. H., Kurt, E. G., Whittaker, A. S., & Varma, A. H. (2014). In-plane seismic behavior of rectangular steel-plate composite wall piers. Journal of Structural Engineering, 141(7), 04014176.CrossRef
Zurück zum Zitat Epackachi, S., Whittaker, A. S., Varma, A. H., & Kurt, E. G. (2015). Finite element modeling of steel-plate concrete composite wall piers. Engineering Structures, 100, 369–384.CrossRef Epackachi, S., Whittaker, A. S., Varma, A. H., & Kurt, E. G. (2015). Finite element modeling of steel-plate concrete composite wall piers. Engineering Structures, 100, 369–384.CrossRef
Zurück zum Zitat Harmon, J. R., & Varma, A. H. (2021). Local buckling of steel faceplates anchored to concrete infill in C-PSW/CF. Thin-Walled Structures, 167, 108230.CrossRef Harmon, J. R., & Varma, A. H. (2021). Local buckling of steel faceplates anchored to concrete infill in C-PSW/CF. Thin-Walled Structures, 167, 108230.CrossRef
Zurück zum Zitat Kenarangi, H., Kizilarslan, E., & Bruneau, M. (2021). Cyclic behavior of c-shaped composite plate shear walls–Concrete filled. Engineering Structures, 226, 111306.CrossRef Kenarangi, H., Kizilarslan, E., & Bruneau, M. (2021). Cyclic behavior of c-shaped composite plate shear walls–Concrete filled. Engineering Structures, 226, 111306.CrossRef
Zurück zum Zitat Kizilarslan, E., Broberg, M., Shafaei, S., Varma, A. H., & Bruneau, M. (2021). Seismic design coefficients and factors for coupled composite plate shear walls/concrete filled (CC-PSW/CF). Engineering Structures, 244, 112766.CrossRef Kizilarslan, E., Broberg, M., Shafaei, S., Varma, A. H., & Bruneau, M. (2021). Seismic design coefficients and factors for coupled composite plate shear walls/concrete filled (CC-PSW/CF). Engineering Structures, 244, 112766.CrossRef
Zurück zum Zitat Kurt, E. G., Varma, A. H., Booth, P., & Whittaker, A. S. (2016). In-plane behavior and design of rectangular SC wall piers without boundary elements. Journal of Structural Engineering, 142, 04016026.CrossRef Kurt, E. G., Varma, A. H., Booth, P., & Whittaker, A. S. (2016). In-plane behavior and design of rectangular SC wall piers without boundary elements. Journal of Structural Engineering, 142, 04016026.CrossRef
Zurück zum Zitat LSTC. (1998). LS-Dyna, version R8.0. Livermore Software Technology Corporation. CA: Livermore. LSTC. (1998). LS-Dyna, version R8.0. Livermore Software Technology Corporation. CA: Livermore.
Zurück zum Zitat LSTC (2013). Keyword User's Manual, Volume II, Material Models, Livermore Software Technology Corporation (LSTC), Livermore, CA, USA. LSTC (2013). Keyword User's Manual, Volume II, Material Models, Livermore Software Technology Corporation (LSTC), Livermore, CA, USA.
Zurück zum Zitat Malvar, L. J., Crawford, J. E., Wesevich, J. W., & Simons, D. (1997). A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering, 19(9–10), 847–873.CrossRef Malvar, L. J., Crawford, J. E., Wesevich, J. W., & Simons, D. (1997). A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering, 19(9–10), 847–873.CrossRef
Zurück zum Zitat Mander, J., Priestley, M., & Park, R. (1988a). Observed stress-strain behavior of confined concrete. Journal of Structural Engineering, 114(8), 1827–1849.CrossRef Mander, J., Priestley, M., & Park, R. (1988a). Observed stress-strain behavior of confined concrete. Journal of Structural Engineering, 114(8), 1827–1849.CrossRef
Zurück zum Zitat Mander, J. B., Priestley, M. J., & Park, R. (1988b). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804–1826.CrossRef Mander, J. B., Priestley, M. J., & Park, R. (1988b). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804–1826.CrossRef
Zurück zum Zitat Oduyemi, T., & Wright, H. (1989). An experimental investigation into the behaviour of double-skin sandwich beams. Journal of Constructional Steel Research, 14(3), 197–220.CrossRef Oduyemi, T., & Wright, H. (1989). An experimental investigation into the behaviour of double-skin sandwich beams. Journal of Constructional Steel Research, 14(3), 197–220.CrossRef
Zurück zum Zitat Polat, E. (2020). Investigation of influence of concrete material models on cyclic inelastic response of a concrete filled composite plate shear wall. Challenge, 6(2), 91–98. Polat, E. (2020). Investigation of influence of concrete material models on cyclic inelastic response of a concrete filled composite plate shear wall. Challenge, 6(2), 91–98.
Zurück zum Zitat Polat, E., & Bruneau, M. (2017). Modeling cyclic inelastic in-plane flexural behavior of concrete filled sandwich steel panel walls. Engineering Structures, 148, 63–80.CrossRef Polat, E., & Bruneau, M. (2017). Modeling cyclic inelastic in-plane flexural behavior of concrete filled sandwich steel panel walls. Engineering Structures, 148, 63–80.CrossRef
Zurück zum Zitat Polat, E., & Bruneau, M. (2018). Cyclic inelastic in-plane flexural behavior of concrete filled sandwich steel panel walls with different cross-section properties. Engineering Journal, American Institute of Steel Construction, 55, 45–76. Polat, E., & Bruneau, M. (2018). Cyclic inelastic in-plane flexural behavior of concrete filled sandwich steel panel walls with different cross-section properties. Engineering Journal, American Institute of Steel Construction, 55, 45–76.
Zurück zum Zitat Polat, E., Kenarangi, H., & Bruneau, M. (2021). Investigation of tie bars axial force demands in composite plate shear walls—concrete filled. International Journal of Steel Structures, 21(3), 901–921.CrossRef Polat, E., Kenarangi, H., & Bruneau, M. (2021). Investigation of tie bars axial force demands in composite plate shear walls—concrete filled. International Journal of Steel Structures, 21(3), 901–921.CrossRef
Zurück zum Zitat Ramesh, S. (2013). Behavior and design of earthquake-resistant dual-plate composite shear wall systems. PURDUE UNIVERSITY. Ramesh, S. (2013). Behavior and design of earthquake-resistant dual-plate composite shear wall systems. PURDUE UNIVERSITY.
Zurück zum Zitat Razvi, S. R., & Saatcioglu, M. (1999). Analysis and design of concrete columns for confinement. Earthquake Spectra, 15(4), 791–811.CrossRef Razvi, S. R., & Saatcioglu, M. (1999). Analysis and design of concrete columns for confinement. Earthquake Spectra, 15(4), 791–811.CrossRef
Zurück zum Zitat Saatcioglu, M., & Razvi, S. R. (1992). Strength and ductility of confined concrete. Journal of Structural Engineering, 118(6), 1590–1607.CrossRef Saatcioglu, M., & Razvi, S. R. (1992). Strength and ductility of confined concrete. Journal of Structural Engineering, 118(6), 1590–1607.CrossRef
Zurück zum Zitat Sener, K. C., & Varma, A. H. (2014). Steel-plate composite walls: Experimental database and design for out-of-plane shear. Journal of Constructional Steel Research, 100, 197–210.CrossRef Sener, K. C., & Varma, A. H. (2014). Steel-plate composite walls: Experimental database and design for out-of-plane shear. Journal of Constructional Steel Research, 100, 197–210.CrossRef
Zurück zum Zitat Sener, K. C., Varma, A. H., & Ayhan, D. (2015). Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design. Journal of Constructional Steel Research, 108, 46.CrossRef Sener, K. C., Varma, A. H., & Ayhan, D. (2015). Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design. Journal of Constructional Steel Research, 108, 46.CrossRef
Zurück zum Zitat Seo, J., Varma, A. H., Sener, K., & Ayhan, D. (2016). Steel-plate composite (SC) walls: In-plane shear behavior, database, and design. Journal of Constructional Steel Research, 119, 202–215.CrossRef Seo, J., Varma, A. H., Sener, K., & Ayhan, D. (2016). Steel-plate composite (SC) walls: In-plane shear behavior, database, and design. Journal of Constructional Steel Research, 119, 202–215.CrossRef
Zurück zum Zitat Sheikh, S. A., & Uzumeri, S. M. (1982). Analytical model for concrete confinement in tied columns. Journal of the Structural Division, ASCE, 108(12), 2703–2722.CrossRef Sheikh, S. A., & Uzumeri, S. M. (1982). Analytical model for concrete confinement in tied columns. Journal of the Structural Division, ASCE, 108(12), 2703–2722.CrossRef
Zurück zum Zitat Varma, A. H., Malushte, S. R., Sener, K. C., & Lai, Z. (2014). Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments. Nuclear Engineering and Design, 269, 240–249.CrossRef Varma, A. H., Malushte, S. R., Sener, K. C., & Lai, Z. (2014). Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments. Nuclear Engineering and Design, 269, 240–249.CrossRef
Zurück zum Zitat Varma, A. H., Shafaei, S., & Klemencic, R. (2019). Steel modules of composite plate shear walls: Behavior, stability, and design. Thin-Walled Structures Thin-Walled Structures, 145, 106384.CrossRef Varma, A. H., Shafaei, S., & Klemencic, R. (2019). Steel modules of composite plate shear walls: Behavior, stability, and design. Thin-Walled Structures Thin-Walled Structures, 145, 106384.CrossRef
Zurück zum Zitat Wright, H., Oduyemi, T., & Evans, H. (1991). The experimental behaviour of double skin composite elements. Journal of Constructional Steel Research, 19(2), 97–110.CrossRef Wright, H., Oduyemi, T., & Evans, H. (1991). The experimental behaviour of double skin composite elements. Journal of Constructional Steel Research, 19(2), 97–110.CrossRef
Zurück zum Zitat Wu, Y., Crawford, J. E., and Magallanes, J. M. "Performance of LS-DYNA concrete constitutive models." Proc., 12th International LS-DYNA Users Conference, 3–5. Wu, Y., Crawford, J. E., and Magallanes, J. M. "Performance of LS-DYNA concrete constitutive models." Proc., 12th International LS-DYNA Users Conference, 3–5.
Zurück zum Zitat Xie, M., & Chapman, J. (2006). Developments in sandwich construction. Journal of Constructional Steel Research, 62(11), 1123–1133.CrossRef Xie, M., & Chapman, J. (2006). Developments in sandwich construction. Journal of Constructional Steel Research, 62(11), 1123–1133.CrossRef
Zurück zum Zitat Zhang, K., Varma, A. H., Malushte, S. R., & Gallocher, S. (2014). Effect of shear connectors on local buckling and composite action in steel concrete composite walls. Nuclear Engineering and Design, 269, 231–239.CrossRef Zhang, K., Varma, A. H., Malushte, S. R., & Gallocher, S. (2014). Effect of shear connectors on local buckling and composite action in steel concrete composite walls. Nuclear Engineering and Design, 269, 231–239.CrossRef
Metadaten
Titel
Theoretical Models for Tie Bar Maximum Axial Force Demand in Composite Plate Shear Walls–Concrete Filled
verfasst von
Erkan Polat
Publikationsdatum
26.06.2022
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 4/2022
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-022-00625-y

Weitere Artikel der Ausgabe 4/2022

International Journal of Steel Structures 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.