Skip to main content
Erschienen in: Journal of Electronic Materials 3/2024

19.01.2024 | Original Research Article

Theoretical Studies on Structural, Electronic, Piezoelectric, and Optical Properties of Janus Sc2CXY (X ≠ Y, X/Y = F, Cl, Br, and I) MXenes

verfasst von: Yanzong Wang, Nan Hu, Qinfang Zhang, Yihan Ma, Rui Huang, Benling Gao, Zhongwen Li

Erschienen in: Journal of Electronic Materials | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using first-principles calculations, the structural, electronic, piezoelectric, and optical properties of Janus Sc2CXY (X ≠ Y, X/Y = F, Cl, Br, and I) MXenes were comprehensively investigated. All of the studied MXenes are structurally stable. Both Young’s modulus Y and Poisson’s ratio ν are isotropic and can be modulated by the surface-functionalized halogen atoms. In addition, the band gaps of all the Janus Sc2CXY MXenes can be modulated from 0.638 eV to 1.437 eV by different functional groups. Interestingly, the semiconductor–metal transition for Janus Sc2CXI (X = F, Cl, and Br) can occur when the compressive strain reaches 6%. Furthermore, because of their symmetric breaking, the Janus Sc2CXY MXenes exhibit excellent in-plane and out-of-plane piezoelectric properties. High optical absorption is found in the visible and ultraviolet ranges for all the studied MXenes, and it is expected that they can be utilized in the fields of piezoelectric and optoelectronic nanodevices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.B. Xiong, X.F. Li, Z.M. Bai, and S.G. Lu, Recent Advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1703419 (2018).CrossRef D.B. Xiong, X.F. Li, Z.M. Bai, and S.G. Lu, Recent Advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1703419 (2018).CrossRef
2.
Zurück zum Zitat N. Li and J. Fan, Computational insights into modulating the performance of MXene based electrode materials for rechargeable batteries. Nanotechnology 32, 252001 (2021).CrossRefADS N. Li and J. Fan, Computational insights into modulating the performance of MXene based electrode materials for rechargeable batteries. Nanotechnology 32, 252001 (2021).CrossRefADS
3.
Zurück zum Zitat L. Giebeler and J. Balach, MXenes in lithium–sulfur batteries: scratching the surface of a complex 2D material – a minireview. Mater. Today Commun. 27, 102323 (2021).CrossRef L. Giebeler and J. Balach, MXenes in lithium–sulfur batteries: scratching the surface of a complex 2D material – a minireview. Mater. Today Commun. 27, 102323 (2021).CrossRef
4.
Zurück zum Zitat Y.G. Zhang, B.S. Sa, N.H. Miao, J. Zhou, and Z.M. Sun, Computational mining of Janus Sc2C-based MXenes for spintronic, photocatalytic, and solar cell applications. J. Mater. Chem. A 9, 10882 (2021).CrossRef Y.G. Zhang, B.S. Sa, N.H. Miao, J. Zhou, and Z.M. Sun, Computational mining of Janus Sc2C-based MXenes for spintronic, photocatalytic, and solar cell applications. J. Mater. Chem. A 9, 10882 (2021).CrossRef
5.
Zurück zum Zitat M.G. Ángel, C.V. Federico, and I. Francesc, MXenes: new horizons in catalysis. ACS Catal. 10, 13487 (2020).CrossRef M.G. Ángel, C.V. Federico, and I. Francesc, MXenes: new horizons in catalysis. ACS Catal. 10, 13487 (2020).CrossRef
6.
Zurück zum Zitat K.R.G. Lim, A.D. Handoko, S.K. Nemani, B. Wyatt, H.Y. Jiang, J.W. Tang, B. Anasori, and Z.W. Seh, Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14, 10834 (2020).PubMedCrossRef K.R.G. Lim, A.D. Handoko, S.K. Nemani, B. Wyatt, H.Y. Jiang, J.W. Tang, B. Anasori, and Z.W. Seh, Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14, 10834 (2020).PubMedCrossRef
7.
Zurück zum Zitat S. Venkateshalu and A.N. Grace, MXenes—a new class of 2D layered materials: synthesis, properties, applications as supercapacitor electrode and beyond. Appl. Mater. Today 18, 100509 (2020).CrossRef S. Venkateshalu and A.N. Grace, MXenes—a new class of 2D layered materials: synthesis, properties, applications as supercapacitor electrode and beyond. Appl. Mater. Today 18, 100509 (2020).CrossRef
8.
Zurück zum Zitat M.K. Aslam, Y.B. Niu, and M.W. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11, 2000681 (2020).CrossRef M.K. Aslam, Y.B. Niu, and M.W. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11, 2000681 (2020).CrossRef
9.
Zurück zum Zitat H. Kim, Z.W. Wang, and H.N. Alshareef, MXetronics: electronic and photonic applications of MXenes. Nano Energy 60, 179 (2019).CrossRef H. Kim, Z.W. Wang, and H.N. Alshareef, MXetronics: electronic and photonic applications of MXenes. Nano Energy 60, 179 (2019).CrossRef
10.
Zurück zum Zitat A. Mostafaei and M. Abbasnejad, Computational studies on the structural, electronic and optical properties of M2CT2 (M=Y, Sc and T=F, Cl) MXene monolayer. J. Alloys Compd. 857, 157982 (2021).CrossRef A. Mostafaei and M. Abbasnejad, Computational studies on the structural, electronic and optical properties of M2CT2 (M=Y, Sc and T=F, Cl) MXene monolayer. J. Alloys Compd. 857, 157982 (2021).CrossRef
11.
Zurück zum Zitat R. Thenmozhi, S. Maruthasalamoorthy, R. Nirmala, and R. Navamathavan, Review—MXene based transducer for biosensor applications. J. Electrochem. Soc. 168, 117507 (2021).CrossRefADS R. Thenmozhi, S. Maruthasalamoorthy, R. Nirmala, and R. Navamathavan, Review—MXene based transducer for biosensor applications. J. Electrochem. Soc. 168, 117507 (2021).CrossRefADS
12.
Zurück zum Zitat S.R. Naqvi, V. Shukla, N.K. Jena, W. Luo, and R. Ahuja, Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. Appl. Mater. Today 19, 100574 (2020).CrossRef S.R. Naqvi, V. Shukla, N.K. Jena, W. Luo, and R. Ahuja, Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. Appl. Mater. Today 19, 100574 (2020).CrossRef
13.
Zurück zum Zitat J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, and M.W. Barsoum, Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118 (2016).CrossRef J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, and M.W. Barsoum, Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118 (2016).CrossRef
14.
Zurück zum Zitat J. Zhou, X.H. Zha, F.Y. Chen, Q. Ye, P. Eklund, S.Y. Du, and Q. Huang, A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 55, 5008 (2016).CrossRef J. Zhou, X.H. Zha, F.Y. Chen, Q. Ye, P. Eklund, S.Y. Du, and Q. Huang, A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 55, 5008 (2016).CrossRef
15.
Zurück zum Zitat J. Zhou, X.H. Zha, X.B. Zhou, F.Y. Chen, G.L. Gao, S.W. Wang, C. Shen, T. Chen, C.Y. Zhi, P. Eklund, S. Du, J.M. Xue, W.Q. Shi, Z.F. Chai, and Q. Huang, Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11, 3841 (2017).PubMedCrossRef J. Zhou, X.H. Zha, X.B. Zhou, F.Y. Chen, G.L. Gao, S.W. Wang, C. Shen, T. Chen, C.Y. Zhi, P. Eklund, S. Du, J.M. Xue, W.Q. Shi, Z.F. Chai, and Q. Huang, Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11, 3841 (2017).PubMedCrossRef
16.
Zurück zum Zitat M. Li, J. Lu, K. Luo, Y.B. Li, K.K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P.O.Å. Persson, S.Y. Du, Z.F. Chai, Z.R. Huang, and Q. Huang, Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730 (2019).PubMedCrossRef M. Li, J. Lu, K. Luo, Y.B. Li, K.K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P.O.Å. Persson, S.Y. Du, Z.F. Chai, Z.R. Huang, and Q. Huang, Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730 (2019).PubMedCrossRef
17.
Zurück zum Zitat V. Kamysbayev, A.S. Filatov, H.C. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, and D.V. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979 (2020).PubMedCrossRefADS V. Kamysbayev, A.S. Filatov, H.C. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, and D.V. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979 (2020).PubMedCrossRefADS
18.
Zurück zum Zitat M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185 (2013).CrossRef M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185 (2013).CrossRef
19.
Zurück zum Zitat S.Y. Guo, H. Lin, J.P. Hu, Z.L. Su, and Y.G. Zhang, Computational study of novel semiconducting Sc2CT2 (T=F, Cl, Br) MXenes for visible-light photocatalytic water splitting. Materials 14, 4739 (2021).PubMedPubMedCentralCrossRefADS S.Y. Guo, H. Lin, J.P. Hu, Z.L. Su, and Y.G. Zhang, Computational study of novel semiconducting Sc2CT2 (T=F, Cl, Br) MXenes for visible-light photocatalytic water splitting. Materials 14, 4739 (2021).PubMedPubMedCentralCrossRefADS
20.
Zurück zum Zitat X.H. Zha, K. Luo, Q.W. Li, Q. Huang, J. He, X.D. Wen, and S.Y. Du, Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL 111, 26007 (2015).CrossRefADS X.H. Zha, K. Luo, Q.W. Li, Q. Huang, J. He, X.D. Wen, and S.Y. Du, Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL 111, 26007 (2015).CrossRefADS
21.
Zurück zum Zitat I.A.M. Ibrahim, S. Abdel-Azeim, A.M. El-Nahas, O. Kühn, C.Y. Chung, A. El-Zatahry, and M.F. Shibl, In silico band-gap engineering of Cr2C MXenes as efficient photocatalysts for water-splitting reactions. J. Phys. Chem. C 126, 14886 (2022).CrossRef I.A.M. Ibrahim, S. Abdel-Azeim, A.M. El-Nahas, O. Kühn, C.Y. Chung, A. El-Zatahry, and M.F. Shibl, In silico band-gap engineering of Cr2C MXenes as efficient photocatalysts for water-splitting reactions. J. Phys. Chem. C 126, 14886 (2022).CrossRef
22.
Zurück zum Zitat X.H. Cui, X.H. Li, R.Z. Zhang, H.L. Cui, and H.T. Yan, Theoretical insight into the electronic, optical, and photocatalytic properties and quantum capacitance of Sc2CT2 (T=F, P, Cl, Se, Br, O, Si, S, OH) MXenes. Vacuum 207, 111615 (2023).CrossRefADS X.H. Cui, X.H. Li, R.Z. Zhang, H.L. Cui, and H.T. Yan, Theoretical insight into the electronic, optical, and photocatalytic properties and quantum capacitance of Sc2CT2 (T=F, P, Cl, Se, Br, O, Si, S, OH) MXenes. Vacuum 207, 111615 (2023).CrossRefADS
23.
Zurück zum Zitat J. Zhang, S. Jia, I. Kholmanov, L. Dong, D.Q. Er, W.B. Chen, H. Guo, Z.H. Jin, V.B. Shenoy, L. Shi, and J. Lou, Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192 (2017).PubMedCrossRef J. Zhang, S. Jia, I. Kholmanov, L. Dong, D.Q. Er, W.B. Chen, H. Guo, Z.H. Jin, V.B. Shenoy, L. Shi, and J. Lou, Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192 (2017).PubMedCrossRef
24.
Zurück zum Zitat A.Y. Lu, H.Y. Zhu, J. Xiao, C.P. Chuu, Y.M. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y.M. Yang, Y. Wang, D. Sokaras, D. Nordlund, P.D. Yang, D.A. Muller, M.Y. Chou, X. Zhang, and L.J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotech. 12, 744 (2017).CrossRef A.Y. Lu, H.Y. Zhu, J. Xiao, C.P. Chuu, Y.M. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y.M. Yang, Y. Wang, D. Sokaras, D. Nordlund, P.D. Yang, D.A. Muller, M.Y. Chou, X. Zhang, and L.J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotech. 12, 744 (2017).CrossRef
25.
Zurück zum Zitat J.J. He, P.B. Lyu, L.Z. Sun, Á.M. García, and P. Nachtigall, High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. J. Mater. Chem. C 4, 6500 (2016).CrossRef J.J. He, P.B. Lyu, L.Z. Sun, Á.M. García, and P. Nachtigall, High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. J. Mater. Chem. C 4, 6500 (2016).CrossRef
26.
Zurück zum Zitat L.Q. Fu, X. Liu, B.Z. Zhou, and X.C. Wang, Prediction of high spin polarization and perpendicular magnetic anisotropy in two dimensional ferromagnetic Mn2CXX′ (X, X′=F, Cl, Br, I) Janus monolayers. Phys. E 134, 114932 (2021).CrossRef L.Q. Fu, X. Liu, B.Z. Zhou, and X.C. Wang, Prediction of high spin polarization and perpendicular magnetic anisotropy in two dimensional ferromagnetic Mn2CXX′ (X, X′=F, Cl, Br, I) Janus monolayers. Phys. E 134, 114932 (2021).CrossRef
27.
Zurück zum Zitat S. Özcan, and B. Biel, Exploring a novel class of Janus MXenes by first principles calculations: structural, electronic and magnetic properties of Sc2CXT, X=O, F, OH; T=C, S, N. Phys. Chem. Chem. Phys. 25, 1881 (2023).PubMedCrossRef S. Özcan, and B. Biel, Exploring a novel class of Janus MXenes by first principles calculations: structural, electronic and magnetic properties of Sc2CXT, X=O, F, OH; T=C, S, N. Phys. Chem. Chem. Phys. 25, 1881 (2023).PubMedCrossRef
28.
Zurück zum Zitat J. Tan, Y.H. Wang, Z.T. Wang, X.J. He, Y.L. Liu, B. Wang, M.I. Katsnelson, and S.J. Yuan, Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy 65, 104058 (2019).CrossRef J. Tan, Y.H. Wang, Z.T. Wang, X.J. He, Y.L. Liu, B. Wang, M.I. Katsnelson, and S.J. Yuan, Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy 65, 104058 (2019).CrossRef
29.
Zurück zum Zitat D.C. Tan, C.M. Jiang, N. Sun, J.J. Huang, Z. Zhang, Q.X. Zhang, J.Y. Bu, S. Bi, Q.L. Guo, and J.H. Song, Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy 90, 106528 (2021).CrossRef D.C. Tan, C.M. Jiang, N. Sun, J.J. Huang, Z. Zhang, Q.X. Zhang, J.Y. Bu, S. Bi, Q.L. Guo, and J.H. Song, Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy 90, 106528 (2021).CrossRef
30.
Zurück zum Zitat D.C. Tan, N. Sun, L. Chen, J.Y. Bu, and C.M. Jiang, Piezoelectricity in monolayer and multilayer Ti3C2Tx MXenes: implications for piezoelectric devices. ACS Appl. Nano Mater. 5, 1034 (2022).CrossRef D.C. Tan, N. Sun, L. Chen, J.Y. Bu, and C.M. Jiang, Piezoelectricity in monolayer and multilayer Ti3C2Tx MXenes: implications for piezoelectric devices. ACS Appl. Nano Mater. 5, 1034 (2022).CrossRef
31.
Zurück zum Zitat G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15 (1996).CrossRef G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15 (1996).CrossRef
32.
33.
Zurück zum Zitat J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).PubMedCrossRefADS J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).PubMedCrossRefADS
35.
Zurück zum Zitat S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006).PubMedCrossRef S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006).PubMedCrossRef
36.
Zurück zum Zitat N.G. Ma, T.R. Wang, N. Li, Y.R. Li, and J. Fan, New phases of MBenes M2B (M=Sc, Ti, and V) as high-capacity electrode materials for rechargeable magnesium ion batteries. Appl. Surf. Sci. 571, 151275 (2022).CrossRef N.G. Ma, T.R. Wang, N. Li, Y.R. Li, and J. Fan, New phases of MBenes M2B (M=Sc, Ti, and V) as high-capacity electrode materials for rechargeable magnesium ion batteries. Appl. Surf. Sci. 571, 151275 (2022).CrossRef
37.
Zurück zum Zitat V.I. Anisimov, J. Zaanen, and O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 44, 943 (1991).CrossRefADS V.I. Anisimov, J. Zaanen, and O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 44, 943 (1991).CrossRefADS
38.
Zurück zum Zitat A. Togo and I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015).CrossRefADS A. Togo and I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015).CrossRefADS
39.
Zurück zum Zitat Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002).CrossRefADS Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002).CrossRefADS
40.
Zurück zum Zitat S.Y. Zhu, Y.Q. Li, X.Y. Wang, D.S. Tang, Q.W. He, C.L. Liu, F.C. Liu, and X.C. Wang, Theoretical investigations of Sc2C based functionalized MXenes for applications in nanoelectromechanical systems. Physica E 145, 115491 (2023).CrossRef S.Y. Zhu, Y.Q. Li, X.Y. Wang, D.S. Tang, Q.W. He, C.L. Liu, F.C. Liu, and X.C. Wang, Theoretical investigations of Sc2C based functionalized MXenes for applications in nanoelectromechanical systems. Physica E 145, 115491 (2023).CrossRef
41.
Zurück zum Zitat S.H. Zhang, J. Zhou, Q. Wang, X.S. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: a new carbon allotrope. Proc. Nati. Acad. Sci. U.S.A. 112, 2372 (2015).CrossRefADS S.H. Zhang, J. Zhou, Q. Wang, X.S. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: a new carbon allotrope. Proc. Nati. Acad. Sci. U.S.A. 112, 2372 (2015).CrossRefADS
42.
Zurück zum Zitat E. Cadelano, P.L. Palla, S. Giordano, and L. Colombo, Elastic properties of hydrogenated graphene. Phys. Rev. B 82, 235414 (2010).CrossRefADS E. Cadelano, P.L. Palla, S. Giordano, and L. Colombo, Elastic properties of hydrogenated graphene. Phys. Rev. B 82, 235414 (2010).CrossRefADS
43.
Zurück zum Zitat C.G. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).PubMedCrossRefADS C.G. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).PubMedCrossRefADS
44.
Zurück zum Zitat R.C. Andrew, R.E. Mapasha, A.M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene. Phys. Rev. B 85, 125428 (2012).CrossRefADS R.C. Andrew, R.E. Mapasha, A.M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene. Phys. Rev. B 85, 125428 (2012).CrossRefADS
45.
Zurück zum Zitat V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3. Phys. Stat. Sol. (RRL) 1, 89 (2007).CrossRef V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3. Phys. Stat. Sol. (RRL) 1, 89 (2007).CrossRef
46.
Zurück zum Zitat M.N. Blonsky, H.L. Zhuang, A.K. Singh, and R.G. Hennig, Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885 (2015).PubMedCrossRef M.N. Blonsky, H.L. Zhuang, A.K. Singh, and R.G. Hennig, Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885 (2015).PubMedCrossRef
47.
Zurück zum Zitat K.A.N. Duerloo, M.T. Ong, and E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871 (2012).CrossRef K.A.N. Duerloo, M.T. Ong, and E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871 (2012).CrossRef
48.
Zurück zum Zitat Y. Wu, C.H. Yang, H.N. Zhang, L.H. Zhu, X.Y. Wang, Y.Q. Li, S.Y. Zhu, and X.C. Wang, The flexible Janus X2PAs (X=Si, Ge and Sn) monolayers with in-plane and out-of-plane piezoelectricity. Appl. Surf. Sci. 589, 152999 (2022).CrossRef Y. Wu, C.H. Yang, H.N. Zhang, L.H. Zhu, X.Y. Wang, Y.Q. Li, S.Y. Zhu, and X.C. Wang, The flexible Janus X2PAs (X=Si, Ge and Sn) monolayers with in-plane and out-of-plane piezoelectricity. Appl. Surf. Sci. 589, 152999 (2022).CrossRef
49.
Zurück zum Zitat W.Z. Chen, X.H. Hou, X.Q. Shi, and H. Pan, Two-dimensional janus transition metal oxides and chalcogenides: multifunctional properties for photocatalysts, electronics, and energy conversion. ACS Appl. Mater. Interfaces 10, 35289 (2018).PubMedCrossRef W.Z. Chen, X.H. Hou, X.Q. Shi, and H. Pan, Two-dimensional janus transition metal oxides and chalcogenides: multifunctional properties for photocatalysts, electronics, and energy conversion. ACS Appl. Mater. Interfaces 10, 35289 (2018).PubMedCrossRef
50.
Zurück zum Zitat G. Rana, R. Gupta, and C. Bera, Theoretical study of phonon and electron transport in low band gap Janus MXene monolayer MoWCO2 for thermoelectric application. Appl. Phys. Lett. 122, 063902 (2023).CrossRefADS G. Rana, R. Gupta, and C. Bera, Theoretical study of phonon and electron transport in low band gap Janus MXene monolayer MoWCO2 for thermoelectric application. Appl. Phys. Lett. 122, 063902 (2023).CrossRefADS
51.
Zurück zum Zitat J.J. Liao, X.G. Ma, G. Yuan, P. Xu, and Z.Y. Yuan, Coexistence of in- and out-of-plane piezoelectricity in Janus XSSiN2 (X=Cr, Mo, W) monolayers. Appl. Surf. Sci. 610, 155586 (2023).CrossRef J.J. Liao, X.G. Ma, G. Yuan, P. Xu, and Z.Y. Yuan, Coexistence of in- and out-of-plane piezoelectricity in Janus XSSiN2 (X=Cr, Mo, W) monolayers. Appl. Surf. Sci. 610, 155586 (2023).CrossRef
52.
Zurück zum Zitat X.J. Yan, W.Y. Li, X. Zou, L.L. Liu, S.F. Wang, Y. Wei, C.M. Yang, Y.F. Sun, and L. Hu, Janus B2XY (X, Y=S, Se, Te) monolayers as piezoelectric materials: a first-principle study. Chem. Phys. Lett. 806, 140007 (2022).CrossRef X.J. Yan, W.Y. Li, X. Zou, L.L. Liu, S.F. Wang, Y. Wei, C.M. Yang, Y.F. Sun, and L. Hu, Janus B2XY (X, Y=S, Se, Te) monolayers as piezoelectric materials: a first-principle study. Chem. Phys. Lett. 806, 140007 (2022).CrossRef
53.
Zurück zum Zitat L. Dong, J. Lou, and V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 11, 8242 (2017).PubMedCrossRef L. Dong, J. Lou, and V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 11, 8242 (2017).PubMedCrossRef
54.
Zurück zum Zitat N. Dimple, A. Jena, R. Rawat, M.K. Ahammed, and A.D. Mohanta, Sarkar, Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting group IVB dichalcogenide monolayers. J. Mater. Chem. A 6, 24885 (2018).CrossRef N. Dimple, A. Jena, R. Rawat, M.K. Ahammed, and A.D. Mohanta, Sarkar, Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting group IVB dichalcogenide monolayers. J. Mater. Chem. A 6, 24885 (2018).CrossRef
55.
Zurück zum Zitat Y.G. Guo, H.Q. Zhu, and Q. Wang, Piezoelectric effects in surface-engineered two-dimensional group III nitrides. ACS Appl. Mater. Interfaces 11, 1033 (2019).PubMedCrossRef Y.G. Guo, H.Q. Zhu, and Q. Wang, Piezoelectric effects in surface-engineered two-dimensional group III nitrides. ACS Appl. Mater. Interfaces 11, 1033 (2019).PubMedCrossRef
56.
Zurück zum Zitat Q. Yang, T. Zhang, C.E. Hu, X.R. Chen, and H.Y. Geng, A first-principles study on the electronic, piezoelectric, and optical properties and strain-dependent carrier mobility of Janus TiXY (X≠Y, X/Y=Cl, Br, I) monolayers. Phys. Chem. Chem. Phys. 25, 274 (2023).CrossRef Q. Yang, T. Zhang, C.E. Hu, X.R. Chen, and H.Y. Geng, A first-principles study on the electronic, piezoelectric, and optical properties and strain-dependent carrier mobility of Janus TiXY (X≠Y, X/Y=Cl, Br, I) monolayers. Phys. Chem. Chem. Phys. 25, 274 (2023).CrossRef
57.
Zurück zum Zitat M. Shahrokhi, Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure. Appl. Surf. Sci. 390, 377 (2016).CrossRefADS M. Shahrokhi, Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure. Appl. Surf. Sci. 390, 377 (2016).CrossRefADS
58.
Zurück zum Zitat M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys. Rev. Appl. 5, 014012 (2016).CrossRefADS M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys. Rev. Appl. 5, 014012 (2016).CrossRefADS
Metadaten
Titel
Theoretical Studies on Structural, Electronic, Piezoelectric, and Optical Properties of Janus Sc2CXY (X ≠ Y, X/Y = F, Cl, Br, and I) MXenes
verfasst von
Yanzong Wang
Nan Hu
Qinfang Zhang
Yihan Ma
Rui Huang
Benling Gao
Zhongwen Li
Publikationsdatum
19.01.2024
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 3/2024
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10899-5

Weitere Artikel der Ausgabe 3/2024

Journal of Electronic Materials 3/2024 Zur Ausgabe

Topical Collection: Electronic Packaging and Interconnections 2023

In Situ Electrical Characterization of Transient Liquid-Phase Sintered Alloys

Neuer Inhalt