Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 7/2022

16.10.2021 | Research Article-Mechanical Engineering

Thermal Stability of Nanocrystalline AZ31/TiB2 Magnesium Matrix Composites Prepared via Mechanical Milling

verfasst von: Haiping Zhou, Nana Deng, Hongbin Zhang, Chengcai Zhang, Yue Lu, Kuidong Gao, Gang Wang, Shuai Sun, Xin Wang

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the thermal stability of nanocrystalline (NC) AZ31/TiB2 magnesium matrix composites was investigated, while the microstructure evolution and mechanical properties were analyzed. The results indicated the AZ31/TiB2 still maintained NC structure after annealing at 350 °C for 180 min. Even at the high annealing temperature of 400 °C and 450 °C for 180 min, their average grain size just reached about 124 nm and 155 nm, indicating excellent thermal stability. The TiB2 particles with sub-micron size uniformly distributed in Mg matrix had no change in size and no reaction with matrix during the annealing treatment. Due to the strong Zener pinning effect of TiB2 particles, the grain growth of Mg matrix at high temperature was effectively inhibited. Meanwhile, the solution and precipitation behavior of Al atoms were completed in a short time, due to the existence of many grain boundaries and structural defects. By calculation, the grain growth kinetics was described by the kinetics equation \(D^{8} - D_{0}^{8} = kt\) and the activation energy Eg for grain growth was 131.6 kJ/mol, which was much higher than that of pure Mg (92 kJ/mol). Due to their excellent thermal stability, the decrease in both compressive yield strength and ultimate compressive strength was no more than 12.2% after annealing treatment. Even annealing at 450 °C for 180 min, the CYS and UCS of the samples were still above 283 MPa and 295 MPa, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hwang, S.; Nishimura, C.; Mccormick, P.G.: Deformation mechanism of nanocrystalline magnesium in compression. Scr. Mater. 44(8), 1507–1511 (2001)CrossRef Hwang, S.; Nishimura, C.; Mccormick, P.G.: Deformation mechanism of nanocrystalline magnesium in compression. Scr. Mater. 44(8), 1507–1511 (2001)CrossRef
2.
Zurück zum Zitat Lü, L.; Lai, M.O.; Liang, W.: Magnesium nanocomposite via mechanochemical milling. Compos. Sci. Technol. 64(13–14), 2009–2014 (2004)CrossRef Lü, L.; Lai, M.O.; Liang, W.: Magnesium nanocomposite via mechanochemical milling. Compos. Sci. Technol. 64(13–14), 2009–2014 (2004)CrossRef
3.
Zurück zum Zitat Lu, L.; Thong, K.K.; Gupta, M.: Mg-based composite reinforced by Mg2Si. Compos. Sci. Technol. 63(5), 627–632 (2003)CrossRef Lu, L.; Thong, K.K.; Gupta, M.: Mg-based composite reinforced by Mg2Si. Compos. Sci. Technol. 63(5), 627–632 (2003)CrossRef
4.
Zurück zum Zitat Meyers, M.A.; Mishra, A.; Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51(4), 427–556 (2006)CrossRef Meyers, M.A.; Mishra, A.; Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51(4), 427–556 (2006)CrossRef
5.
Zurück zum Zitat Yu, H.; Zhou, H.; Sun, Y., et al.: Microstructure thermal stability of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling. J. Alloy. Compd. 722, 39–47 (2017)CrossRef Yu, H.; Zhou, H.; Sun, Y., et al.: Microstructure thermal stability of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling. J. Alloy. Compd. 722, 39–47 (2017)CrossRef
6.
Zurück zum Zitat Chang, C.I.; Du, X.H.; Huang, J.C.: Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing. Scr. Mater. 59(3), 356–359 (2008)CrossRef Chang, C.I.; Du, X.H.; Huang, J.C.: Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing. Scr. Mater. 59(3), 356–359 (2008)CrossRef
7.
Zurück zum Zitat Tong, L.B.; Zheng, M.Y.; Xu, S.W., et al.: Room-temperature compressive deformation behavior of Mg–Zn–Ca alloy processed by equal channel angular pressing. Mater. Sci. Eng. A 528(2), 672–679 (2010)CrossRef Tong, L.B.; Zheng, M.Y.; Xu, S.W., et al.: Room-temperature compressive deformation behavior of Mg–Zn–Ca alloy processed by equal channel angular pressing. Mater. Sci. Eng. A 528(2), 672–679 (2010)CrossRef
8.
Zurück zum Zitat Feng, J.; Sun, H.; Li, X.; et al.: Microstructures and mechanical properties of the ultrafine-grained Mg–3Al–Zn alloys fabricated by powder metallurgy. Adv. Powder Technol., 550–556 (2016) Feng, J.; Sun, H.; Li, X.; et al.: Microstructures and mechanical properties of the ultrafine-grained Mg–3Al–Zn alloys fabricated by powder metallurgy. Adv. Powder Technol., 550–556 (2016)
9.
Zurück zum Zitat Valiev, R.; Lowe, T.; Mukherjee, A.: Understanding the unique properties of SPD-induced microstructures. JOM 52(4), 37–40 (2000)CrossRef Valiev, R.; Lowe, T.; Mukherjee, A.: Understanding the unique properties of SPD-induced microstructures. JOM 52(4), 37–40 (2000)CrossRef
10.
Zurück zum Zitat Rane, G.; Welzel, U.; Mittemeijer, E.: Grain growth studies on nanocrystalline Ni powder. Acta Mater. 60(20), 7011–7023 (2012)CrossRef Rane, G.; Welzel, U.; Mittemeijer, E.: Grain growth studies on nanocrystalline Ni powder. Acta Mater. 60(20), 7011–7023 (2012)CrossRef
11.
Zurück zum Zitat Popov, A.A.; Pyshmintsev, I.Y.; Demakov, S.L., et al.: Structural and mechanical properties of nanocrystalleve titanium processed by severe plastic deformation. Scr. Mater. 37(7), 1089–1094 (1997)CrossRef Popov, A.A.; Pyshmintsev, I.Y.; Demakov, S.L., et al.: Structural and mechanical properties of nanocrystalleve titanium processed by severe plastic deformation. Scr. Mater. 37(7), 1089–1094 (1997)CrossRef
12.
Zurück zum Zitat Chen, J.; Lu, L.; Lu, K.: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54(11), 1913–1918 (2006)CrossRef Chen, J.; Lu, L.; Lu, K.: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54(11), 1913–1918 (2006)CrossRef
13.
Zurück zum Zitat Cai, X.; Xin, S.; Sun, B., et al.: Thermally stable and strong bulk Mg–MgO in situ nanocomposites by reactive cryomilling and high-pressure consolidation. J. Mater. Sci. 53(9), 6613–6625 (2018)CrossRef Cai, X.; Xin, S.; Sun, B., et al.: Thermally stable and strong bulk Mg–MgO in situ nanocomposites by reactive cryomilling and high-pressure consolidation. J. Mater. Sci. 53(9), 6613–6625 (2018)CrossRef
14.
Zurück zum Zitat Sun, B.; Li, S.; Imai, H., et al.: Synthesis kinetics of Mg2Si and solid-state formation of Mg–Mg2Si composite. Powder Technol. 217(none), 157–162 (2012)CrossRef Sun, B.; Li, S.; Imai, H., et al.: Synthesis kinetics of Mg2Si and solid-state formation of Mg–Mg2Si composite. Powder Technol. 217(none), 157–162 (2012)CrossRef
15.
Zurück zum Zitat Xiao, P.; Gao, Y.; Xu, F., et al.: An investigation on grain refinement mechanism of TiB2 particulate reinforced AZ91 composites and its effect on mechanical properties. J. Alloy Compd. 780, 237–244 (2019)CrossRef Xiao, P.; Gao, Y.; Xu, F., et al.: An investigation on grain refinement mechanism of TiB2 particulate reinforced AZ91 composites and its effect on mechanical properties. J. Alloy Compd. 780, 237–244 (2019)CrossRef
16.
Zurück zum Zitat Xiao, P.; Gao, Y.; Yang, C., et al.: Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles. Mater. Sci. Eng. A 710, 251–259 (2018)CrossRef Xiao, P.; Gao, Y.; Yang, C., et al.: Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles. Mater. Sci. Eng. A 710, 251–259 (2018)CrossRef
17.
Zurück zum Zitat Fang, C.; Zhang, X.; Hao, H., et al.: Effects of particle distribution on microstructural evolution and mechanical properties of TiB2/AZ31 composite sheets. Mater. Sci. Eng. A 684, 592–597 (2017)CrossRef Fang, C.; Zhang, X.; Hao, H., et al.: Effects of particle distribution on microstructural evolution and mechanical properties of TiB2/AZ31 composite sheets. Mater. Sci. Eng. A 684, 592–597 (2017)CrossRef
18.
Zurück zum Zitat Zhou, H.; Zhang, C.; Han, B., et al.: Microstructures and mechanical properties of nanocrystalline AZ31 magnesium alloy powders with sub-micron TiB2 additions prepared by mechanical milling. Curr. Comput.-Aid. Drug Des. 10(6), 550 (2020) Zhou, H.; Zhang, C.; Han, B., et al.: Microstructures and mechanical properties of nanocrystalline AZ31 magnesium alloy powders with sub-micron TiB2 additions prepared by mechanical milling. Curr. Comput.-Aid. Drug Des. 10(6), 550 (2020)
19.
Zurück zum Zitat Lei, R.; Wang, M.; Li, Z., et al.: Structure evolution and solid solubility extension of copper–niobium powders during mechanical alloying. Mater. Sci. Eng. A 528(13–14), 4475–4481 (2011)CrossRef Lei, R.; Wang, M.; Li, Z., et al.: Structure evolution and solid solubility extension of copper–niobium powders during mechanical alloying. Mater. Sci. Eng. A 528(13–14), 4475–4481 (2011)CrossRef
20.
Zurück zum Zitat Zhou, H.; Hu, L.; Sun, Y., et al.: Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling. Mater. Charact. 113, 108–116 (2016)CrossRef Zhou, H.; Hu, L.; Sun, Y., et al.: Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling. Mater. Charact. 113, 108–116 (2016)CrossRef
21.
Zurück zum Zitat Lu, K.: Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Mater. Sci. Eng. R-Rep. 16(4), 161–221 (1996)CrossRef Lu, K.: Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Mater. Sci. Eng. R-Rep. 16(4), 161–221 (1996)CrossRef
22.
Zurück zum Zitat Taleghani, M.; Torralba, J.M.: The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing. Mater. Lett. 98, 182–185 (2013)CrossRef Taleghani, M.; Torralba, J.M.: The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing. Mater. Lett. 98, 182–185 (2013)CrossRef
23.
Zurück zum Zitat Xin, W.; Hu, L.; Kai, L., et al.: Grain growth kinetics of bulk AZ31 magnesium alloy by hot pressing. J. Alloys Compd. 527(none), 193–196 (2012) Xin, W.; Hu, L.; Kai, L., et al.: Grain growth kinetics of bulk AZ31 magnesium alloy by hot pressing. J. Alloys Compd. 527(none), 193–196 (2012)
24.
Zurück zum Zitat Simes, S.; Calinas, R.; Vieira, M., et al.: In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology 21(14), 145701 (2010)CrossRef Simes, S.; Calinas, R.; Vieira, M., et al.: In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology 21(14), 145701 (2010)CrossRef
25.
Zurück zum Zitat Huang, J.S.; Zhang, J.; Cuevas, A., et al.: Recrystallization and grain growth in bulk Cu and Cu(Sn) alloy. Mater. Chem. Phys. 49(1), 33–41 (1997)CrossRef Huang, J.S.; Zhang, J.; Cuevas, A., et al.: Recrystallization and grain growth in bulk Cu and Cu(Sn) alloy. Mater. Chem. Phys. 49(1), 33–41 (1997)CrossRef
26.
Zurück zum Zitat Zhou, C.; Zhang, Q.: Effect of Pr3Al11 nanoparticles on crystallite growth kinetics of nanocrystalline Mg. J. Alloy. Compd. 804, 299–304 (2019)CrossRef Zhou, C.; Zhang, Q.: Effect of Pr3Al11 nanoparticles on crystallite growth kinetics of nanocrystalline Mg. J. Alloy. Compd. 804, 299–304 (2019)CrossRef
27.
Zurück zum Zitat Thein, M.A.; Lu, L.; Lai, M.O.: Kinetics of grain growth in nanocrystalline magnesium-based metal–metal composite synthesized by mechanical alloying. Compos. Sci. Technol. 66(3–4), 531–537 (2006)CrossRef Thein, M.A.; Lu, L.; Lai, M.O.: Kinetics of grain growth in nanocrystalline magnesium-based metal–metal composite synthesized by mechanical alloying. Compos. Sci. Technol. 66(3–4), 531–537 (2006)CrossRef
28.
Zurück zum Zitat Miao, Q.; Hu, L.; Xin, W., et al.: Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling. J. Alloy. Compd. 493(1–2), 87–90 (2010)CrossRef Miao, Q.; Hu, L.; Xin, W., et al.: Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling. J. Alloy. Compd. 493(1–2), 87–90 (2010)CrossRef
29.
Zurück zum Zitat Xu, J.M.; Liu, Y.; Jin, B., et al.: Thermal stability of nanocrystalline AZ31 magnesium alloy fabricated by surface mechanical attrition treatment. Acta Metall. Sin. 28(009), 1162–1169 (2015)CrossRef Xu, J.M.; Liu, Y.; Jin, B., et al.: Thermal stability of nanocrystalline AZ31 magnesium alloy fabricated by surface mechanical attrition treatment. Acta Metall. Sin. 28(009), 1162–1169 (2015)CrossRef
30.
Zurück zum Zitat Yu, H.; Yu, S.; Wan, Z., et al.: Nanocrystalline Ti/AZ61 magnesium matrix composite: evolution of microstructure and mechanical property during annealing treatment. J. Alloy. Compd. 741, 231–239 (2018)CrossRef Yu, H.; Yu, S.; Wan, Z., et al.: Nanocrystalline Ti/AZ61 magnesium matrix composite: evolution of microstructure and mechanical property during annealing treatment. J. Alloy. Compd. 741, 231–239 (2018)CrossRef
31.
Zurück zum Zitat Stráská, J.; Janeek, M.; ČížEk, J., et al.: Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Mater. Charact. 94, 69–79 (2014)CrossRef Stráská, J.; Janeek, M.; ČížEk, J., et al.: Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Mater. Charact. 94, 69–79 (2014)CrossRef
32.
Zurück zum Zitat Yu, H.; Zhou, H.; Sun, Y., et al.: Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy. Adv. Powder Technol. 29(12), 3241–3249 (2018)CrossRef Yu, H.; Zhou, H.; Sun, Y., et al.: Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy. Adv. Powder Technol. 29(12), 3241–3249 (2018)CrossRef
Metadaten
Titel
Thermal Stability of Nanocrystalline AZ31/TiB2 Magnesium Matrix Composites Prepared via Mechanical Milling
verfasst von
Haiping Zhou
Nana Deng
Hongbin Zhang
Chengcai Zhang
Yue Lu
Kuidong Gao
Gang Wang
Shuai Sun
Xin Wang
Publikationsdatum
16.10.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 7/2022
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06284-1

Weitere Artikel der Ausgabe 7/2022

Arabian Journal for Science and Engineering 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.