Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 11/2020

10.08.2020 | Research Article-Mechanical Engineering

Thermally Reduced Graphene Oxide-Reinforced Acrylonitrile Butadiene Styrene Composites Developed by Combined Solution and Melt Mixing Method

verfasst von: Mohsin Ali Raza, Muhammad Faheem Maqsood, Zaeem Ur Rehman, Aidan Westwood, Aqil Inam, Mian Muhammad Sohaib Sattar, Faizan Ali Ghauri, Muhammad Tasaduq Ilyas

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene is a potential reinforcing material for polymeric materials due to high aspect ratio, surface area and electrical and mechanical properties. In this work, thermally reduced graphene oxide (TRGO)/acrylonitrile butadiene styrene (ABS) composites were developed using combined solution mixing and melt mixing techniques. The effect of wt% of pristine graphite and TRGO on the mechanical and thermal properties of composites was studied. Graphene oxide (GO) was prepared from graphite powder using improved Hummers’ method followed by thermal reduction to obtain TRGO. Characterization of GO, TRGO and as-developed ABS composites was performed using Fourier transmission infrared spectroscopy, scanning electron microscopy, atomic force microscopy, differential scanning calorimetry and thermogravimetric analysis. Tensile properties were determined by testing injection-molded dumbbell-shaped samples. The results showed that tensile properties of TRGO/ABS composites increased significantly at 0.2 wt% loading compared to corresponding graphite/ABS composites. However, increased content of both fillers decreased mechanical properties of the composites. TRGO, at 0.2 wt% loading, increased glass transition temperature of ABS by ca.7 °C. TRGO neither increased nor decreased thermal stability of ABS composites. This study showed that combined solution and melt mixing technique can significantly improve dispersion of TRGO in ABS matrix.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brydson, J.A.: Plastics Materials. Butterworth-Heinemann, Oxford (1999) Brydson, J.A.: Plastics Materials. Butterworth-Heinemann, Oxford (1999)
2.
Zurück zum Zitat Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)CrossRef Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)CrossRef
3.
Zurück zum Zitat Kar, K.K.; Rana, S.; Pandey, J.: Handbook of Polymer Nanocomposites Processing, Performance and Application. Springer, New York (2015)CrossRef Kar, K.K.; Rana, S.; Pandey, J.: Handbook of Polymer Nanocomposites Processing, Performance and Application. Springer, New York (2015)CrossRef
4.
Zurück zum Zitat Bouhfid, R.; Arrakhiz, F.; Qaiss, A.: Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide 6/acrylonitrile–butadiene–styrene blends. Polym. Compos. 37(4), 998–1006 (2016)CrossRef Bouhfid, R.; Arrakhiz, F.; Qaiss, A.: Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide 6/acrylonitrile–butadiene–styrene blends. Polym. Compos. 37(4), 998–1006 (2016)CrossRef
5.
Zurück zum Zitat Jayanth, N.; Senthil, P.: Application of 3D printed ABS based conductive carbon black composite sensor in void fraction measurement. Compos. B Eng. 159, 224–230 (2019)CrossRef Jayanth, N.; Senthil, P.: Application of 3D printed ABS based conductive carbon black composite sensor in void fraction measurement. Compos. B Eng. 159, 224–230 (2019)CrossRef
6.
Zurück zum Zitat Mura, A.; Adamo, F.; Wang, H.; Leong, W.S.; Ji, X.; Kong, J.: Investigation about tribological behavior of ABS and PC-ABS polymers coated with graphene. Tribol. Int. 134, 335–340 (2019)CrossRef Mura, A.; Adamo, F.; Wang, H.; Leong, W.S.; Ji, X.; Kong, J.: Investigation about tribological behavior of ABS and PC-ABS polymers coated with graphene. Tribol. Int. 134, 335–340 (2019)CrossRef
7.
Zurück zum Zitat Raza, M.A.; Mujadid, M.; Hussain, M.; Ali, H.Q.; Rehman, Z.U.; Inam, A.: Mechanical properties of graphene oxide coated-glass fiber reinforced unsaturated polyester composites. Mater. Res. Express 6(11), 115303 (2019)CrossRef Raza, M.A.; Mujadid, M.; Hussain, M.; Ali, H.Q.; Rehman, Z.U.; Inam, A.: Mechanical properties of graphene oxide coated-glass fiber reinforced unsaturated polyester composites. Mater. Res. Express 6(11), 115303 (2019)CrossRef
8.
Zurück zum Zitat Allen, M.J.; Tung, V.C.; Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)CrossRef Allen, M.J.; Tung, V.C.; Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)CrossRef
9.
Zurück zum Zitat Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007)CrossRef Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007)CrossRef
10.
Zurück zum Zitat Eda, G.; Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRef Eda, G.; Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRef
11.
Zurück zum Zitat Raza, M.A.; Westwood, A.; Brown, A.; Hondow, N.; Stirling, C.: Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49(13), 4269–4279 (2011)CrossRef Raza, M.A.; Westwood, A.; Brown, A.; Hondow, N.; Stirling, C.: Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49(13), 4269–4279 (2011)CrossRef
12.
Zurück zum Zitat Pour, R.H.; Hassan, A.; Soheilmoghaddam, M.; Bidsorkhi, H.C.: Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polym. Compos. 37(6), 1633–1640 (2016)CrossRef Pour, R.H.; Hassan, A.; Soheilmoghaddam, M.; Bidsorkhi, H.C.: Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polym. Compos. 37(6), 1633–1640 (2016)CrossRef
13.
Zurück zum Zitat Wang, F.; Zhang, Y.; Zhang, B.; Hong, R.; Kumar, M.; Xie, C.: Enhanced electrical conductivity and mechanical properties of ABS/EPDM composites filled with graphene. Compos. B Eng. 83, 66–74 (2015)CrossRef Wang, F.; Zhang, Y.; Zhang, B.; Hong, R.; Kumar, M.; Xie, C.: Enhanced electrical conductivity and mechanical properties of ABS/EPDM composites filled with graphene. Compos. B Eng. 83, 66–74 (2015)CrossRef
14.
Zurück zum Zitat Waheed, Q.; Khan, A.N.; Jan, R.: Investigating the reinforcement effect of few layer graphene and multi-walled carbon nanotubes in acrylonitrile-butadiene-styrene. Polymer 97, 496–503 (2016)CrossRef Waheed, Q.; Khan, A.N.; Jan, R.: Investigating the reinforcement effect of few layer graphene and multi-walled carbon nanotubes in acrylonitrile-butadiene-styrene. Polymer 97, 496–503 (2016)CrossRef
15.
Zurück zum Zitat Panwar, V.; Pal, K.: An optimal reduction technique for rGO/ABS composites having high-end dynamic properties based on Cole–Cole plot, degree of entanglement and C-factor. Compos. B Eng. 114, 46–57 (2017)CrossRef Panwar, V.; Pal, K.: An optimal reduction technique for rGO/ABS composites having high-end dynamic properties based on Cole–Cole plot, degree of entanglement and C-factor. Compos. B Eng. 114, 46–57 (2017)CrossRef
16.
Zurück zum Zitat Uhl, F.M.; Yao, Q.; Wilkie, C.A.: Formation of nanocomposites of styrene and its copolymers using graphite as the nanomaterial. Polym. Adv. Technol. 16(7), 533–540 (2005)CrossRef Uhl, F.M.; Yao, Q.; Wilkie, C.A.: Formation of nanocomposites of styrene and its copolymers using graphite as the nanomaterial. Polym. Adv. Technol. 16(7), 533–540 (2005)CrossRef
17.
Zurück zum Zitat Pandey, A.K.; Kumar, R.; Kachhavah, V.S.; Kar, K.K.: Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile–butadiene–styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv. 6(56), 50559–50571 (2016)CrossRef Pandey, A.K.; Kumar, R.; Kachhavah, V.S.; Kar, K.K.: Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile–butadiene–styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv. 6(56), 50559–50571 (2016)CrossRef
18.
Zurück zum Zitat Difallah, B.B.; Kharrat, M.; Dammak, M.; Monteil, G.: Mechanical and tribological response of ABS polymer matrix filled with graphite powder. Mater. Des. 34, 782–787 (2012)CrossRef Difallah, B.B.; Kharrat, M.; Dammak, M.; Monteil, G.: Mechanical and tribological response of ABS polymer matrix filled with graphite powder. Mater. Des. 34, 782–787 (2012)CrossRef
19.
Zurück zum Zitat Moniruzzaman, M.; Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194–5205 (2006)CrossRef Moniruzzaman, M.; Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194–5205 (2006)CrossRef
20.
Zurück zum Zitat Dennis, H.; Hunter, D.; Chang, D.; Kim, S.; White, J.; Cho, J.; Paul, D.R.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23), 9513–9522 (2001)CrossRef Dennis, H.; Hunter, D.; Chang, D.; Kim, S.; White, J.; Cho, J.; Paul, D.R.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23), 9513–9522 (2001)CrossRef
21.
Zurück zum Zitat Ercan, N.; Durmus, A.; Kaşgöz, A.: Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. J. Thermoplast. Compos. Mater. 30(7), 950–970 (2017)CrossRef Ercan, N.; Durmus, A.; Kaşgöz, A.: Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. J. Thermoplast. Compos. Mater. 30(7), 950–970 (2017)CrossRef
22.
Zurück zum Zitat Caradonna, A.; Colucci, G.; Giorcelli, M.; Frache, A.; Badini, C.: Thermal behavior of thermoplastic polymer nanocomposites containing graphene nanoplatelets. J. Appl. Polym. Sci. 134, 20 (2017)CrossRef Caradonna, A.; Colucci, G.; Giorcelli, M.; Frache, A.; Badini, C.: Thermal behavior of thermoplastic polymer nanocomposites containing graphene nanoplatelets. J. Appl. Polym. Sci. 134, 20 (2017)CrossRef
23.
Zurück zum Zitat Burk, L.; Gliem, M.; Lais, F.; Nutz, F.; Retsch, M.; Mülhaupt, R.: Mechanochemically carboxylated multilayer graphene for carbon/ABS composites with improved thermal conductivity. Polymers 10(10), 1088 (2018)CrossRef Burk, L.; Gliem, M.; Lais, F.; Nutz, F.; Retsch, M.; Mülhaupt, R.: Mechanochemically carboxylated multilayer graphene for carbon/ABS composites with improved thermal conductivity. Polymers 10(10), 1088 (2018)CrossRef
24.
Zurück zum Zitat Dul, S.; Fambri, L.; Pegoretti, A.: Fused deposition modelling with ABS–graphene nanocomposites. Compos. A Appl. Sci. Manuf. 85, 181–191 (2016)CrossRef Dul, S.; Fambri, L.; Pegoretti, A.: Fused deposition modelling with ABS–graphene nanocomposites. Compos. A Appl. Sci. Manuf. 85, 181–191 (2016)CrossRef
25.
Zurück zum Zitat Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)CrossRef Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)CrossRef
26.
Zurück zum Zitat Raza, M.A.; Rehman, Z.U.; Ghauri, F.A.; Ahmad, A.; Ahmad, R.; Raffi, M.: Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal. Thin Solid Films 620, 150–159 (2016)CrossRef Raza, M.A.; Rehman, Z.U.; Ghauri, F.A.; Ahmad, A.; Ahmad, R.; Raffi, M.: Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal. Thin Solid Films 620, 150–159 (2016)CrossRef
27.
Zurück zum Zitat Ghauri, F.A.; Raza, M.A.; Baig, M.S.; Ibrahim, S.: Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings. Mater. Res. Express 4, 125601 (2017)CrossRef Ghauri, F.A.; Raza, M.A.; Baig, M.S.; Ibrahim, S.: Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings. Mater. Res. Express 4, 125601 (2017)CrossRef
28.
Zurück zum Zitat Shen, J.; Li, T.; Long, Y.; Shi, M.; Li, N.; Ye, M.: One-step solid state preparation of reduced graphene oxide. Carbon 50(6), 2134–2140 (2012)CrossRef Shen, J.; Li, T.; Long, Y.; Shi, M.; Li, N.; Ye, M.: One-step solid state preparation of reduced graphene oxide. Carbon 50(6), 2134–2140 (2012)CrossRef
29.
Zurück zum Zitat Nekahi, A.; Marashi, P.; Haghshenas, D.: Transparent conductive thin film of ultra large reduced graphene oxide monolayers. Appl. Surf. Sci. 295, 59–65 (2014)CrossRef Nekahi, A.; Marashi, P.; Haghshenas, D.: Transparent conductive thin film of ultra large reduced graphene oxide monolayers. Appl. Surf. Sci. 295, 59–65 (2014)CrossRef
31.
Zurück zum Zitat Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)CrossRef Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)CrossRef
32.
Zurück zum Zitat Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q.: Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69, 467–480 (2014)CrossRef Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q.: Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69, 467–480 (2014)CrossRef
33.
Zurück zum Zitat Ghaleb, Z.; Mariatti, M.; Ariff, Z.: Graphene nanoparticle dispersion in epoxy thin film composites for electronic applications: effect on tensile, electrical and thermal properties. J. Mater. Sci. Mater. Electron. 28(1), 808–817 (2017)CrossRef Ghaleb, Z.; Mariatti, M.; Ariff, Z.: Graphene nanoparticle dispersion in epoxy thin film composites for electronic applications: effect on tensile, electrical and thermal properties. J. Mater. Sci. Mater. Electron. 28(1), 808–817 (2017)CrossRef
Metadaten
Titel
Thermally Reduced Graphene Oxide-Reinforced Acrylonitrile Butadiene Styrene Composites Developed by Combined Solution and Melt Mixing Method
verfasst von
Mohsin Ali Raza
Muhammad Faheem Maqsood
Zaeem Ur Rehman
Aidan Westwood
Aqil Inam
Mian Muhammad Sohaib Sattar
Faizan Ali Ghauri
Muhammad Tasaduq Ilyas
Publikationsdatum
10.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 11/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04845-4

Weitere Artikel der Ausgabe 11/2020

Arabian Journal for Science and Engineering 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.