Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 10/2022

18.03.2022 | Original Article

Thermogravimetric assessment of the thermal degradation during combustion of crude and pure glycerol

verfasst von: Manar Almazrouei, Idowu Adeyemi, Isam Janajreh

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

According to the United States Energy Information Administration (US EIA), the annual pure biodiesel production in the USA was 6.88 million cubic meters in 2020. Similarly, significant biodiesel production was reported across the world with countries like Brazil, Germany, and Indonesia estimated to have produced 5.9, 3.2, and 6.2 million cubic meters in 2019. This enormous biodiesel production, which is widespread globally, has led to huge amount of waste in the form of glycerol as a product of transesterification. It was estimated that crude glycerol production was 189.27 million cubic meters in 2021. Thermochemical conversion processes, such as combustion, gasification, and pyrolysis, are viable ways to utilize the waste glycerol. In this study, the thermogravimetric analyzer was used to investigate and compare the characteristics of crude and pure glycerol combustion. In particular, the kinetic and thermodynamic parameters as well as the ignition and burnout temperatures were evaluated for the two fuels. The glycerol samples were subjected to a temperature range of 50–700 °C under dissimilar heating rates, i.e., 5, 10, 15, and 20 °C/min. Results of the thermal decomposition process indicate that while there is a single stage in pure glycerol, the crude glycerol is characterized with three decomposition stages. In addition, the experimental results showed that the main combustion process in both samples occurred at about 150–(325 ± 25) °C. The effect of heating rate on TG and DTG curves showed that at higher heating rates, the degradation curves shifts to higher temperature values. The crude glycerol ignition temperature is in the range of 195–218 °C compared to 180–212 °C for pure glycerol, and their burnout temperatures were 463–508 °C and 238–276 °C, respectively. The activation energies were evaluated with Kissinger method and found to be 75 kJ/mol for the devolatilization event in the crude glycerol and 79.6 kJ/mol for the pure glycerol.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat EIA US (2020) Monthly biodiesel production report. Washington, Independent Statics & Analysis. U.S. Department of Energy Washington, DC 20585. www.eia.gov EIA US (2020) Monthly biodiesel production report. Washington, Independent Statics & Analysis. U.S. Department of Energy Washington, DC 20585. www.​eia.​gov
4.
Zurück zum Zitat Gabriel KCP, Barros AAC, Correia MJN (2015) Study of molar ratio in biodiesel production from palm oil. International Association for Management of Technology, IAMOT Conference, Cape Town, South Africa, pp. 434–442 Gabriel KCP, Barros AAC, Correia MJN (2015) Study of molar ratio in biodiesel production from palm oil. International Association for Management of Technology, IAMOT Conference, Cape Town, South Africa, pp. 434–442
5.
Zurück zum Zitat Colombo K, Ender L, Chivanga Barros AA (2017) The study of biodiesel production using CaO as a heterogeneous catalytic reaction Egypt. J. Petrol. 26(2):341–349 Colombo K, Ender L, Chivanga Barros AA (2017) The study of biodiesel production using CaO as a heterogeneous catalytic reaction Egypt. J. Petrol. 26(2):341–349
7.
Zurück zum Zitat Giuseppe B, Adolfo I, Aimaro S, Angelo B (2017) Glycerol production and transformation: a critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors. Membrane, MDPI, 1–31. https://doi.org/10.3390/membranes7020017 Giuseppe B, Adolfo I, Aimaro S, Angelo B (2017) Glycerol production and transformation: a critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors. Membrane, MDPI, 1–31. https://​doi.​org/​10.​3390/​membranes7020017​
8.
Zurück zum Zitat Haas MJ, Mcaloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 94:671–678CrossRef Haas MJ, Mcaloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 94:671–678CrossRef
9.
Zurück zum Zitat Chilakamarry CR, Sakinah AM, Zularisam AW, Pandey A (2021) Glycerol waste to value added products and its potential applications. Systems Microbiology and Biomanufacturing 1(4):378–396CrossRef Chilakamarry CR, Sakinah AM, Zularisam AW, Pandey A (2021) Glycerol waste to value added products and its potential applications. Systems Microbiology and Biomanufacturing 1(4):378–396CrossRef
10.
Zurück zum Zitat Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28(4):500–518CrossRef Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28(4):500–518CrossRef
11.
Zurück zum Zitat Janajreh I, ElSamad T, Hussain MN (2018) Intensification of transesterification via sonication numerical simulation and sensitivity study. Appl Energy 185:2151–2159CrossRef Janajreh I, ElSamad T, Hussain MN (2018) Intensification of transesterification via sonication numerical simulation and sensitivity study. Appl Energy 185:2151–2159CrossRef
12.
Zurück zum Zitat Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists’ Society 74(11):1457–1463CrossRef Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists’ Society 74(11):1457–1463CrossRef
13.
Zurück zum Zitat Fountoulakis MS, Manios T (2009) Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Biores Technol 100(12):3043–3047CrossRef Fountoulakis MS, Manios T (2009) Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Biores Technol 100(12):3043–3047CrossRef
14.
Zurück zum Zitat Zhang M, Wu H (2015) Effect of major impurities in crude glycerol on solubility and properties of glycerol/methanol/bio-oil blends. Fuel 159:118–127CrossRef Zhang M, Wu H (2015) Effect of major impurities in crude glycerol on solubility and properties of glycerol/methanol/bio-oil blends. Fuel 159:118–127CrossRef
15.
Zurück zum Zitat Mangayil R, Karp M, Santala V (2012) Bioconversion of crude glycerol from biodiesel production to hydrogen. Int J Hydrogen Energy 37(17):12198CrossRef Mangayil R, Karp M, Santala V (2012) Bioconversion of crude glycerol from biodiesel production to hydrogen. Int J Hydrogen Energy 37(17):12198CrossRef
16.
Zurück zum Zitat Varrone C, Liberatore R, Crescenzi T, Izzo G, Wang A (2013) The valorization of glycerol: economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen. Appl Energy 105:349–357CrossRef Varrone C, Liberatore R, Crescenzi T, Izzo G, Wang A (2013) The valorization of glycerol: economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen. Appl Energy 105:349–357CrossRef
17.
Zurück zum Zitat Luo X, Ge X, Cui S, Li Y (2016) Value-added processing of crude glycerol into chemicals and polymers. Biores Technol 215:144–154CrossRef Luo X, Ge X, Cui S, Li Y (2016) Value-added processing of crude glycerol into chemicals and polymers. Biores Technol 215:144–154CrossRef
18.
Zurück zum Zitat Chongkhong S, Tongurai C, Chetpattananondh P (2009) Continuous esterification for biodiesel production from palm fatty acid distillate using economical process. Renew Energy 34(4):1059–1063CrossRef Chongkhong S, Tongurai C, Chetpattananondh P (2009) Continuous esterification for biodiesel production from palm fatty acid distillate using economical process. Renew Energy 34(4):1059–1063CrossRef
19.
Zurück zum Zitat Skoulou VK, Manara P, Zabaniotou AA (2012) H2 enriched fuels from co-pyrolysis of crude glycerol with biomass. J Anal Appl Pyrolysis 97:198–204CrossRef Skoulou VK, Manara P, Zabaniotou AA (2012) H2 enriched fuels from co-pyrolysis of crude glycerol with biomass. J Anal Appl Pyrolysis 97:198–204CrossRef
20.
Zurück zum Zitat Skoulou VK, Zabaniotou AA (2013) Co-gasification of crude glycerol with lignocellulosic biomass for enhanced syngas production. J Anal Appl Pyrolysis 99:110–116CrossRef Skoulou VK, Zabaniotou AA (2013) Co-gasification of crude glycerol with lignocellulosic biomass for enhanced syngas production. J Anal Appl Pyrolysis 99:110–116CrossRef
21.
Zurück zum Zitat Dou B et al (2010) Steam reforming of crude glycerol with in situ CO2 sorption. Bioresource Technol 101(7):2436–2442CrossRef Dou B et al (2010) Steam reforming of crude glycerol with in situ CO2 sorption. Bioresource Technol 101(7):2436–2442CrossRef
22.
Zurück zum Zitat Bohon MD, Metzger BA, Linak WP, King CJ, Roberts WL (2011) Glycerol combustion and emissions. Proc Combust Inst 33(2):2717–2724CrossRef Bohon MD, Metzger BA, Linak WP, King CJ, Roberts WL (2011) Glycerol combustion and emissions. Proc Combust Inst 33(2):2717–2724CrossRef
23.
Zurück zum Zitat Steinmetz SA, Herrington JS, Winterrowd CK, Roberts WL, Wendt JOL, Linak WP (2013) Crude glycerol combustion: particulate, acrolein, and other volatile organic emissions. Proc Combust Inst 34(2):2749–2757CrossRef Steinmetz SA, Herrington JS, Winterrowd CK, Roberts WL, Wendt JOL, Linak WP (2013) Crude glycerol combustion: particulate, acrolein, and other volatile organic emissions. Proc Combust Inst 34(2):2749–2757CrossRef
24.
Zurück zum Zitat Bartocci P et al (2017) Pyrolysis of pellets made with biomass and glycerol: kinetic analysis and evolved gas analysis. Biomass Bioenerg 97:11–19CrossRef Bartocci P et al (2017) Pyrolysis of pellets made with biomass and glycerol: kinetic analysis and evolved gas analysis. Biomass Bioenerg 97:11–19CrossRef
25.
Zurück zum Zitat Yuan X et al (2016) Pyrolysis and combustion kinetics of glycerol-in-diesel hybrid fuel using thermogravimetric analysis. Fuel 182:502–508CrossRef Yuan X et al (2016) Pyrolysis and combustion kinetics of glycerol-in-diesel hybrid fuel using thermogravimetric analysis. Fuel 182:502–508CrossRef
26.
Zurück zum Zitat Crnkovic PM, Koch C, Ávila I, Mortari DA, Cordoba AM, Moreira dos Santos A (2012) Determination of the activation energies of beef tallow and crude glycerin combustion using thermogravimetry. Biomass Bioenerg 44:8–16CrossRef Crnkovic PM, Koch C, Ávila I, Mortari DA, Cordoba AM, Moreira dos Santos A (2012) Determination of the activation energies of beef tallow and crude glycerin combustion using thermogravimetry. Biomass Bioenerg 44:8–16CrossRef
27.
Zurück zum Zitat Castelló ML, Dweck J, Aranda DAG (2011) Kinetic study of thermal processing of glycerol by thermogravimetry. J Therm Anal Calorim 105(3):737–746CrossRef Castelló ML, Dweck J, Aranda DAG (2011) Kinetic study of thermal processing of glycerol by thermogravimetry. J Therm Anal Calorim 105(3):737–746CrossRef
28.
Zurück zum Zitat Almazrouei M, Janajreh I (2020) Model-fitting approach to kinetic analysis of non-isothermal pyrolysis of pure and crude glycerol. Renew Energy 145:1693–1708CrossRef Almazrouei M, Janajreh I (2020) Model-fitting approach to kinetic analysis of non-isothermal pyrolysis of pure and crude glycerol. Renew Energy 145:1693–1708CrossRef
29.
Zurück zum Zitat Almazrouei M, Janajreh I (2019) Thermogravimetric study of the combustion characteristics of biodiesel and petroleum diesel. J Therm Anal Calorim 136.2:925–935 Almazrouei M, Janajreh I (2019) Thermogravimetric study of the combustion characteristics of biodiesel and petroleum diesel. J Therm Anal Calorim 136.2:925–935
30.
Zurück zum Zitat Dou B, Dupont V, Williams PT, Chen H, Ding Y (2009) Thermogravimetric kinetics of crude glycerol. Biores Technol 100(9):2613–2620CrossRef Dou B, Dupont V, Williams PT, Chen H, Ding Y (2009) Thermogravimetric kinetics of crude glycerol. Biores Technol 100(9):2613–2620CrossRef
31.
Zurück zum Zitat Lu J-J, Chen W-H (2015) Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Energy 160:49–57CrossRef Lu J-J, Chen W-H (2015) Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Energy 160:49–57CrossRef
32.
Zurück zum Zitat Huang L et al (2016) Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel. Biores Technol 218:631–642CrossRef Huang L et al (2016) Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel. Biores Technol 218:631–642CrossRef
33.
Zurück zum Zitat Niu S-L, Han K-H, Lu C-M (2011) Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process. Energy Convers Manage 52(1):532–537CrossRef Niu S-L, Han K-H, Lu C-M (2011) Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process. Energy Convers Manage 52(1):532–537CrossRef
34.
Zurück zum Zitat Xiu S, Rojanala HK, Shahbazi A, Fini EH, Wang L (2012) Pyrolysis and combustion characteristics of Bio-oil from swine manure. J Therm Anal Calorim 107(2):823–829CrossRef Xiu S, Rojanala HK, Shahbazi A, Fini EH, Wang L (2012) Pyrolysis and combustion characteristics of Bio-oil from swine manure. J Therm Anal Calorim 107(2):823–829CrossRef
35.
Zurück zum Zitat Sahu SG, Sarkar P, Chakraborty N, Adak AK (2010) Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol 91(3):369–378CrossRef Sahu SG, Sarkar P, Chakraborty N, Adak AK (2010) Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol 91(3):369–378CrossRef
36.
Zurück zum Zitat Ahn S, Choi G, Kim D (2014) The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition. Biomass Bioenerg 71:144–154CrossRef Ahn S, Choi G, Kim D (2014) The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition. Biomass Bioenerg 71:144–154CrossRef
37.
Zurück zum Zitat Zhang B et al (2017) Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion. Appl Therm Eng 113:1303–1312CrossRef Zhang B et al (2017) Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion. Appl Therm Eng 113:1303–1312CrossRef
38.
Zurück zum Zitat Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:1CrossRef Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:1CrossRef
39.
Zurück zum Zitat Kaur R, Gera P, Jha MK, Bhaskar T (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 250:422–428CrossRef Kaur R, Gera P, Jha MK, Bhaskar T (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 250:422–428CrossRef
40.
Zurück zum Zitat Yuan X, He T, Cao H, Yuan Q (2017) Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renew Energy 107:489–496CrossRef Yuan X, He T, Cao H, Yuan Q (2017) Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renew Energy 107:489–496CrossRef
41.
Zurück zum Zitat Niu S, Chen M, Li Y, Xue F (2016) Evaluation on the oxy-fuel combustion behavior of dried sewage sludge. Fuel 178:129–138CrossRef Niu S, Chen M, Li Y, Xue F (2016) Evaluation on the oxy-fuel combustion behavior of dried sewage sludge. Fuel 178:129–138CrossRef
42.
Zurück zum Zitat Gao W, Zhang M, Wu H (2017) Ignition temperatures of various bio-oil based fuel blends and slurry fuels. Fuel 207:240–243CrossRef Gao W, Zhang M, Wu H (2017) Ignition temperatures of various bio-oil based fuel blends and slurry fuels. Fuel 207:240–243CrossRef
43.
Zurück zum Zitat Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Biores Technol 146:485–493CrossRef Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Biores Technol 146:485–493CrossRef
44.
Zurück zum Zitat Khan AS et al (2016) Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. J Mol Liq 223:754–762CrossRef Khan AS et al (2016) Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. J Mol Liq 223:754–762CrossRef
45.
Zurück zum Zitat Bohon MD, Metzger BA, Linak WP, King CJ, Roberts WL (2011) Glycerol combustion and emissions. Proc Combust Inst 33(2):2717–2724CrossRef Bohon MD, Metzger BA, Linak WP, King CJ, Roberts WL (2011) Glycerol combustion and emissions. Proc Combust Inst 33(2):2717–2724CrossRef
Metadaten
Titel
Thermogravimetric assessment of the thermal degradation during combustion of crude and pure glycerol
verfasst von
Manar Almazrouei
Idowu Adeyemi
Isam Janajreh
Publikationsdatum
18.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 10/2022
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02526-w

Weitere Artikel der Ausgabe 10/2022

Biomass Conversion and Biorefinery 10/2022 Zur Ausgabe