Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 4/2018

11.09.2018 | Original Article

Thermogravimetric pyrolysis for neem char using novel agricultural waste: a study of process optimization and statistical modeling

verfasst von: M. T. H. Siddiqui, Sabzoi Nizamuddin, Humair Ahmed Baloch, N. M. Mubarak, M. M. Tunio, Sajid Riaz, Khaula Shirin, Zakiuddin Ahmed, Munir Hussain

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Agricultural biomasses are the underutilized sources that have extraordinary potential to synthesize green and cost-effective chemicals. This research focuses on the utilization of novel agricultural residue, i.e., waste neem cake, to produce highly efficient, cost-effective, and environment-friendly fuel, i.e., neem char (NC), through thermogravimetric pyrolysis. To study the effects of process variable on char yield and higher heating value (HHV), statistical modeling was applied by central composite design of response surface methodology. Furthermore, chemical and structural characterization of neem cake and char were carried out by using Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The reaction temperature was the most prominent variable found from the ANOVA (analysis of variances) to affect char yield and its HHV. The optimal result was achieved with 21.46% char yield and HHV value of 6371 kcal/kg at 600 °C, 60 min, and 3 mm. The heating value of char was highly improved indicating the potential application of char as a high-energy renewable fuel. Further, the carbon content and fixed carbon values increased, whereas hydrogen, oxygen, volatile matters, and moisture content decreased in char after the pyrolysis process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16(3):1462–1476CrossRef Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16(3):1462–1476CrossRef
2.
Zurück zum Zitat Azargohar R, Nanda S, Kozinski JA, Dalai AK, Sutarto R (2014) Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125:90–100CrossRef Azargohar R, Nanda S, Kozinski JA, Dalai AK, Sutarto R (2014) Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125:90–100CrossRef
3.
Zurück zum Zitat Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248CrossRef Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248CrossRef
4.
Zurück zum Zitat Abnisa F, Daud WMAW, Husin WNW, Sahu JN (2011) Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy 35(5):1863–1872CrossRef Abnisa F, Daud WMAW, Husin WNW, Sahu JN (2011) Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy 35(5):1863–1872CrossRef
5.
Zurück zum Zitat Siddiqui MTH, Nizamuddin S, Mubarak NM, Shirin K, Aijaz M, Hussain M, Baloch HA (2017) Characterization and process optimization of biochar produced using novel biomass, waste pomegranate peel: a response surface methodology approach. Waste Biomass Valorization 1–12. https://doi.org/10.1007/s12649-017-0091-y Siddiqui MTH, Nizamuddin S, Mubarak NM, Shirin K, Aijaz M, Hussain M, Baloch HA (2017) Characterization and process optimization of biochar produced using novel biomass, waste pomegranate peel: a response surface methodology approach. Waste Biomass Valorization 1–12. https://​doi.​org/​10.​1007/​s12649-017-0091-y
6.
Zurück zum Zitat Eid, A., N. Jaradat, and N. Elmarzugi. (2017) A review of chemical constituents and traditional usage of neem plant (Azadirachta indica) Eid, A., N. Jaradat, and N. Elmarzugi. (2017) A review of chemical constituents and traditional usage of neem plant (Azadirachta indica)
7.
Zurück zum Zitat Immaraju JA (1998) The commercial use of azadirachtin and its integration into viable pest control programmes. Pestic Sci 54(3):285–289CrossRef Immaraju JA (1998) The commercial use of azadirachtin and its integration into viable pest control programmes. Pestic Sci 54(3):285–289CrossRef
8.
Zurück zum Zitat Alagu, R. and E.G. Sundaram, Preparation and characterization of pyrolytic oil through pyrolysis of neem seed and study of performance, combustion and emission characteristics in CI engine. J Energy Inst, 2016 Alagu, R. and E.G. Sundaram, Preparation and characterization of pyrolytic oil through pyrolysis of neem seed and study of performance, combustion and emission characteristics in CI engine. J Energy Inst, 2016
9.
Zurück zum Zitat Singh V et al (2014) Pyrolysis of sal seed to liquid product. Bioresour Technol 151:432–435CrossRef Singh V et al (2014) Pyrolysis of sal seed to liquid product. Bioresour Technol 151:432–435CrossRef
10.
Zurück zum Zitat Volli V, Singh R (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585CrossRef Volli V, Singh R (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585CrossRef
11.
Zurück zum Zitat Steiner C, Glaser B, Geraldes Teixeira W, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171(6):893–899CrossRef Steiner C, Glaser B, Geraldes Teixeira W, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171(6):893–899CrossRef
12.
Zurück zum Zitat Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287CrossRef Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287CrossRef
13.
Zurück zum Zitat Sahu SG, Sarkar P, Chakraborty N, Adak AK (2010) Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol 91(3):369–378CrossRef Sahu SG, Sarkar P, Chakraborty N, Adak AK (2010) Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol 91(3):369–378CrossRef
14.
Zurück zum Zitat Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101:72–78CrossRef Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101:72–78CrossRef
15.
Zurück zum Zitat Siddiqui M et al (2018) Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environ Chem Lett:1–24 Siddiqui M et al (2018) Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environ Chem Lett:1–24
16.
Zurück zum Zitat Jung K-W, Jeong TU, Kang HJ, Chang JS, Ahn KH (2016) Preparation of modified-biochar from Laminaria japonica: simultaneous optimization of aluminum electrode-based electro-modification and pyrolysis processes and its application for phosphate removal. Bioresour Technol 214:548–557CrossRef Jung K-W, Jeong TU, Kang HJ, Chang JS, Ahn KH (2016) Preparation of modified-biochar from Laminaria japonica: simultaneous optimization of aluminum electrode-based electro-modification and pyrolysis processes and its application for phosphate removal. Bioresour Technol 214:548–557CrossRef
17.
Zurück zum Zitat Aslan N (2008) Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol 185(1):80–86CrossRef Aslan N (2008) Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol 185(1):80–86CrossRef
18.
Zurück zum Zitat Said KAM, Amin MAM (2016) Overview on the response surface methodology (RSM) in extraction processes. J Appl Sci Process Engineering 2(1):8–17 Said KAM, Amin MAM (2016) Overview on the response surface methodology (RSM) in extraction processes. J Appl Sci Process Engineering 2(1):8–17
19.
Zurück zum Zitat Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977CrossRef Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977CrossRef
20.
Zurück zum Zitat Borges FC, du Z, Xie Q, Trierweiler JO, Cheng Y, Wan Y, Liu Y, Zhu R, Lin X, Chen P, Ruan R (2014) Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour Technol 156:267–274CrossRef Borges FC, du Z, Xie Q, Trierweiler JO, Cheng Y, Wan Y, Liu Y, Zhu R, Lin X, Chen P, Ruan R (2014) Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour Technol 156:267–274CrossRef
21.
Zurück zum Zitat Ghani ZA, Ishak MAM, Ismail K (2011) Direct liquefaction of Mukah Balingian low-rank Malaysian coal: optimization using response surface methodology. Asia Pac J Chem Eng 6(4):581–588CrossRef Ghani ZA, Ishak MAM, Ismail K (2011) Direct liquefaction of Mukah Balingian low-rank Malaysian coal: optimization using response surface methodology. Asia Pac J Chem Eng 6(4):581–588CrossRef
22.
Zurück zum Zitat Mubarak N et al (2014) Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass Bioenergy 61:265–275CrossRef Mubarak N et al (2014) Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass Bioenergy 61:265–275CrossRef
23.
Zurück zum Zitat Shen J, Zhu S, Liu X, Zhang H, Tan J (2010) The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag 51(5):983–987CrossRef Shen J, Zhu S, Liu X, Zhang H, Tan J (2010) The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag 51(5):983–987CrossRef
24.
Zurück zum Zitat Nhuchhen DR (2016) Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 180:348–356CrossRef Nhuchhen DR (2016) Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 180:348–356CrossRef
25.
Zurück zum Zitat Nizamuddin S et al (2016) A critical analysis on palm kernel shell from oil palm industry as a feedstock for solid char production. Rev Chem Eng 32(5):489–505CrossRef Nizamuddin S et al (2016) A critical analysis on palm kernel shell from oil palm industry as a feedstock for solid char production. Rev Chem Eng 32(5):489–505CrossRef
26.
Zurück zum Zitat Moralı U, Şensöz S (2015) Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char. Fuel 150:672–678CrossRef Moralı U, Şensöz S (2015) Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char. Fuel 150:672–678CrossRef
27.
Zurück zum Zitat Uzun BB, Apaydin-Varol E, Ateş F, Özbay N, Pütün AE (2010) Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char. Fuel 89(1):176–184CrossRef Uzun BB, Apaydin-Varol E, Ateş F, Özbay N, Pütün AE (2010) Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char. Fuel 89(1):176–184CrossRef
28.
Zurück zum Zitat Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88(5):523–531CrossRef Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88(5):523–531CrossRef
29.
Zurück zum Zitat Intani K, Latif S, Kabir AKMR, Müller J (2016) Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresource Technol 218:541–551CrossRef Intani K, Latif S, Kabir AKMR, Müller J (2016) Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresource Technol 218:541–551CrossRef
30.
Zurück zum Zitat Tripathi M, Sahu J, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481CrossRef Tripathi M, Sahu J, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481CrossRef
31.
Zurück zum Zitat Ola F, Jekayinfa S (2015) Pyrolysis of sandbox (Hura crepitans) shell: effect of pyrolysis parameters on biochar yield. Res Agric Eng 61(4):170–176CrossRef Ola F, Jekayinfa S (2015) Pyrolysis of sandbox (Hura crepitans) shell: effect of pyrolysis parameters on biochar yield. Res Agric Eng 61(4):170–176CrossRef
32.
Zurück zum Zitat Calvo L et al (2004) Heating process characteristics and kinetics of rice straw in different atmospheres. Fuel Process Technol 85(4):279–291MathSciNetCrossRef Calvo L et al (2004) Heating process characteristics and kinetics of rice straw in different atmospheres. Fuel Process Technol 85(4):279–291MathSciNetCrossRef
33.
Zurück zum Zitat Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197CrossRef Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197CrossRef
34.
Zurück zum Zitat Fu P, Hu S, Xiang J, Sun L, Su S, Wang J (2012) Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. J Anal Appl Pyrolysis 98:177–183CrossRef Fu P, Hu S, Xiang J, Sun L, Su S, Wang J (2012) Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. J Anal Appl Pyrolysis 98:177–183CrossRef
35.
Zurück zum Zitat Anderson N, Jones J, Page-Dumroese D, McCollum D, Baker S, Loeffler D, Chung W (2013) A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass. Energies 6(1):164–183CrossRef Anderson N, Jones J, Page-Dumroese D, McCollum D, Baker S, Loeffler D, Chung W (2013) A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass. Energies 6(1):164–183CrossRef
36.
Zurück zum Zitat Zhong K, Wang Q (2010) Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydr Polym 80(1):19–25CrossRef Zhong K, Wang Q (2010) Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydr Polym 80(1):19–25CrossRef
37.
Zurück zum Zitat Boey P-L, Maniam GP, Hamid SA (2009) Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour Technol 100(24):6362–6368CrossRef Boey P-L, Maniam GP, Hamid SA (2009) Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour Technol 100(24):6362–6368CrossRef
38.
Zurück zum Zitat Mayoral M et al (2001) Different approaches to proximate analysis by thermogravimetry analysis. Thermochim Acta 370(1):91–97CrossRef Mayoral M et al (2001) Different approaches to proximate analysis by thermogravimetry analysis. Thermochim Acta 370(1):91–97CrossRef
39.
Zurück zum Zitat Gupta BS, Ako JE (2005) Application of guar gum as a flocculant aid in food processing and potable water treatment. Eur Food Res Technol 221(6):746–751CrossRef Gupta BS, Ako JE (2005) Application of guar gum as a flocculant aid in food processing and potable water treatment. Eur Food Res Technol 221(6):746–751CrossRef
40.
Zurück zum Zitat Pütün AE, Özbay N, Önal EP, Pütün E (2005) Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Process Technol 86(11):1207–1219CrossRef Pütün AE, Özbay N, Önal EP, Pütün E (2005) Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Process Technol 86(11):1207–1219CrossRef
41.
Zurück zum Zitat Telmo C, Lousada J, Moreira N (2010) Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour Technol 101(11):3808–3815CrossRef Telmo C, Lousada J, Moreira N (2010) Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour Technol 101(11):3808–3815CrossRef
42.
Zurück zum Zitat Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresour Technol 148:196–201CrossRef Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresour Technol 148:196–201CrossRef
43.
Zurück zum Zitat Patel SU, Jeevan Kumar B, Badhe YP, Sharma BK, Saha S, Biswas S, Chaudhury A, Tambe SS, Kulkarni BD (2007) Estimation of gross calorific value of coals using artificial neural networks. Fuel 86(3):334–344CrossRef Patel SU, Jeevan Kumar B, Badhe YP, Sharma BK, Saha S, Biswas S, Chaudhury A, Tambe SS, Kulkarni BD (2007) Estimation of gross calorific value of coals using artificial neural networks. Fuel 86(3):334–344CrossRef
44.
Zurück zum Zitat Singh S, Ram LC, Masto RE, Verma SK (2011) A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants. Int J Coal Geol 87(2):112–120CrossRef Singh S, Ram LC, Masto RE, Verma SK (2011) A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants. Int J Coal Geol 87(2):112–120CrossRef
45.
Zurück zum Zitat Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ (2010) Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol 101(12):4584–4592CrossRef Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ (2010) Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol 101(12):4584–4592CrossRef
46.
Zurück zum Zitat Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRef Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRef
47.
Zurück zum Zitat Koufopanos C, Lucchesi A, Maschio G (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67(1):75–84CrossRef Koufopanos C, Lucchesi A, Maschio G (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67(1):75–84CrossRef
48.
Zurück zum Zitat Pavia, D., G. Lampman, and G. Kriz, Introduction to spectroscopy: a guide for students of organic chemistry—chap. 2 and appendix 1. Saunders Golden Sunburst Series, 1979. 367 Pavia, D., G. Lampman, and G. Kriz, Introduction to spectroscopy: a guide for students of organic chemistry—chap. 2 and appendix 1. Saunders Golden Sunburst Series, 1979. 367
49.
Zurück zum Zitat Nizamuddin S et al (2018) Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Environ Sci Pollut Res:1–11 Nizamuddin S et al (2018) Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Environ Sci Pollut Res:1–11
50.
Zurück zum Zitat Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497CrossRef Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497CrossRef
51.
Zurück zum Zitat Joseph BL et al (1987) Introduction to organic spectroscopy. Macmillan, New York Joseph BL et al (1987) Introduction to organic spectroscopy. Macmillan, New York
52.
Zurück zum Zitat Olsson A-M, Salmén L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339(4):813–818CrossRef Olsson A-M, Salmén L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339(4):813–818CrossRef
53.
Zurück zum Zitat Rashid K, Reddy KSK, al Shoaibi A, Srinivasakannan C (2014) Process optimisation of porous carbon preparation from date palm pits and adsorption kinetics of methylene blue. Can J Chem Eng 92(3):426–434CrossRef Rashid K, Reddy KSK, al Shoaibi A, Srinivasakannan C (2014) Process optimisation of porous carbon preparation from date palm pits and adsorption kinetics of methylene blue. Can J Chem Eng 92(3):426–434CrossRef
54.
Zurück zum Zitat Ahmad MA, Puad NAA, Bello OS (2014) Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Res Industry 6:18–35CrossRef Ahmad MA, Puad NAA, Bello OS (2014) Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Res Industry 6:18–35CrossRef
Metadaten
Titel
Thermogravimetric pyrolysis for neem char using novel agricultural waste: a study of process optimization and statistical modeling
verfasst von
M. T. H. Siddiqui
Sabzoi Nizamuddin
Humair Ahmed Baloch
N. M. Mubarak
M. M. Tunio
Sajid Riaz
Khaula Shirin
Zakiuddin Ahmed
Munir Hussain
Publikationsdatum
11.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 4/2018
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0336-4

Weitere Artikel der Ausgabe 4/2018

Biomass Conversion and Biorefinery 4/2018 Zur Ausgabe