Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2019

18.09.2019

Thermomechanical Behavior of Biocompatible Austenitic Stainless Steels during Simulated Torsion Tests

verfasst von: Felipe Anderson S. de Aquino, Eden S. Silva, Samuel F. Rodrigues, Clodualdo Aranas Jr., Fulvio Siciliano, Samir S. Coutinho, Gedeon S. Reis

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermomechanical behavior and the microstructural evolution during the hot deformation are important aspects of metal alloys during hot forging and rolling processes. Here, the correlation between dynamically recrystallized grain size (dDRX), steady-state stress (σss) and Zener–Hollomon (Z) parameter is investigated according to the Universal DerbyAshby relationship. Specimens of a UNS S 31673 and a UNS S 31675 steels, used in the manufacture of orthopedic implants, were subjected to continuous isothermal torsion tests. A strain of 3.0 and strain rates of 0.01, 0.1, 1.0 and 10 s−1 at temperatures of 1000, 1100 and 1200 °C, were employed. The results showed that the competition between the hardening and dynamic softening (i.e., recovery and recrystallization) mechanisms, as depicted by the flow curves, agreed with the Derby relation. This observation is also a consequence of the variation in the stacking fault energy (SFE) with the applied strain. Additionally, the influence of the hot deformation parameters on the shape of the curves and the grain refinement is governed by the balance between these thermally activated mechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.A.D. Almeida and R. Barbosa, Hot Deformation of 304 Type Austenitic Stainless Steel at High Strain Rates, ISIJ Int., 2003, 43, p 264–266CrossRef J.A.D. Almeida and R. Barbosa, Hot Deformation of 304 Type Austenitic Stainless Steel at High Strain Rates, ISIJ Int., 2003, 43, p 264–266CrossRef
2.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRef
3.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science, New York, 2004, p 557–615 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science, New York, 2004, p 557–615
4.
Zurück zum Zitat H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387–389, p 203–208CrossRef H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387–389, p 203–208CrossRef
5.
Zurück zum Zitat S.B. Davenport, N.J. Silk, C.N. Sparks, and C.M. Sellars, Development of Constitutive Equations for Modelling of Hot Rolling, Mater. Sci. Technol., 2000, 16, p 539–546CrossRef S.B. Davenport, N.J. Silk, C.N. Sparks, and C.M. Sellars, Development of Constitutive Equations for Modelling of Hot Rolling, Mater. Sci. Technol., 2000, 16, p 539–546CrossRef
6.
Zurück zum Zitat T. Sakai and J.J. Jonas, Plastic Deformation: Role of Recovery and Recrystallization, Encycl. Mater. Sci. Technol., 2001, 7, p 7079–7084CrossRef T. Sakai and J.J. Jonas, Plastic Deformation: Role of Recovery and Recrystallization, Encycl. Mater. Sci. Technol., 2001, 7, p 7079–7084CrossRef
7.
Zurück zum Zitat Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Mater., 1984, 32, p 57–70CrossRef Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Mater., 1984, 32, p 57–70CrossRef
8.
Zurück zum Zitat F.R.N. Nabarro, Work Hardening and Dynamical Recovery of FCC Metals in Multiple Glide, Acta Met., 1989, 37, p 1521–1546CrossRef F.R.N. Nabarro, Work Hardening and Dynamical Recovery of FCC Metals in Multiple Glide, Acta Met., 1989, 37, p 1521–1546CrossRef
9.
Zurück zum Zitat N.D. Ryan and H.J. McQueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Proc. Technol., 1990, 21, p 177–199CrossRef N.D. Ryan and H.J. McQueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Proc. Technol., 1990, 21, p 177–199CrossRef
10.
Zurück zum Zitat S.F. Rodrigues, E.S. Silva, G.S. Reis, R.C. Sousa, and O. Balancin, Prediction of Hot Flow Plastic Curves of ISO 5832-9 Steel Used as Orthopedic Implants, Mater. Res., 2014, 17, p 436–444CrossRef S.F. Rodrigues, E.S. Silva, G.S. Reis, R.C. Sousa, and O. Balancin, Prediction of Hot Flow Plastic Curves of ISO 5832-9 Steel Used as Orthopedic Implants, Mater. Res., 2014, 17, p 436–444CrossRef
11.
Zurück zum Zitat F.R. Bernades, S.F. Rodrigues, E.S. Silva, G.S. Reis, M.B.R. Silva, A.M. Jorge, Jr., and O. Balancin, Analytical Modeling of the Thermomechanical Behavior of ASTM F-1586 High Nitrogen Austenitic Stainless Steel Used as a Biomaterial Under Multipass Deformation, Mater. Sci. Eng. C, 2015, 51, p 87–98CrossRef F.R. Bernades, S.F. Rodrigues, E.S. Silva, G.S. Reis, M.B.R. Silva, A.M. Jorge, Jr., and O. Balancin, Analytical Modeling of the Thermomechanical Behavior of ASTM F-1586 High Nitrogen Austenitic Stainless Steel Used as a Biomaterial Under Multipass Deformation, Mater. Sci. Eng. C, 2015, 51, p 87–98CrossRef
12.
Zurück zum Zitat E.J. Giordani, A.M. Jorge, Jr., and O. Balancin, Proportion of Recovery and Recrystallization During Interpass Times at High Temperatures on a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial, Scr. Mater., 2006, 55, p 743–746CrossRef E.J. Giordani, A.M. Jorge, Jr., and O. Balancin, Proportion of Recovery and Recrystallization During Interpass Times at High Temperatures on a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial, Scr. Mater., 2006, 55, p 743–746CrossRef
13.
Zurück zum Zitat B. Derby, The Dependence of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1991, 39, p 955–962CrossRef B. Derby, The Dependence of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1991, 39, p 955–962CrossRef
14.
Zurück zum Zitat M.R. Drury and J.L. Urai, Deformation-Related Recrystallization Processes, Tectonophysics, 1990, 172, p 235–253CrossRef M.R. Drury and J.L. Urai, Deformation-Related Recrystallization Processes, Tectonophysics, 1990, 172, p 235–253CrossRef
15.
Zurück zum Zitat B. Derby and M.F. Ashby, On Dynamic Recrystallization, Scr. Metall., 1987, 6(21), p 879–884CrossRef B. Derby and M.F. Ashby, On Dynamic Recrystallization, Scr. Metall., 1987, 6(21), p 879–884CrossRef
16.
Zurück zum Zitat M.E. Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI, 304 Steels: A Comparative Study, Mater. Sci. Eng. A, 2003, 343, p 116–125CrossRef M.E. Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI, 304 Steels: A Comparative Study, Mater. Sci. Eng. A, 2003, 343, p 116–125CrossRef
17.
Zurück zum Zitat R.E. Schramm and R.P. Reed, Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels, Metall. Mater. Trans. A, 1975, 6, p 1345–1351CrossRef R.E. Schramm and R.P. Reed, Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels, Metall. Mater. Trans. A, 1975, 6, p 1345–1351CrossRef
18.
Zurück zum Zitat K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104CrossRef K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104CrossRef
19.
Zurück zum Zitat B. Aashranth, M.A. Davinvi, D. Samantaray, U. Borah, and S.K. Albert, A New Critical Point on the Stress-Strain Curve: Delineation of Dynamic Recrystallisation from Grain Growth, Mater. Des., 2017, 116, p 495–503CrossRef B. Aashranth, M.A. Davinvi, D. Samantaray, U. Borah, and S.K. Albert, A New Critical Point on the Stress-Strain Curve: Delineation of Dynamic Recrystallisation from Grain Growth, Mater. Des., 2017, 116, p 495–503CrossRef
20.
Zurück zum Zitat I. Salvatori, T. Inoue, and K. Nagai, Ultrafine Grain Structure Through Dynamic Recrystallization for Type 304 Stainless Steel, ISIJ Int., 2002, 42, p 744–750CrossRef I. Salvatori, T. Inoue, and K. Nagai, Ultrafine Grain Structure Through Dynamic Recrystallization for Type 304 Stainless Steel, ISIJ Int., 2002, 42, p 744–750CrossRef
21.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef
22.
Zurück zum Zitat C.M. Sellars, W.J. Tegart, and G. Mc, La relation entre la résistance et la structure dans la deformation à chaud, Mem. Sci. Rev. Métall., 1966, 63, p 731–746CrossRef C.M. Sellars, W.J. Tegart, and G. Mc, La relation entre la résistance et la structure dans la deformation à chaud, Mem. Sci. Rev. Métall., 1966, 63, p 731–746CrossRef
23.
Zurück zum Zitat J.L. Uvira and J.J. Jonas, Hot Compression of Armco Irion and Silicon Steel, Trans. Met. Soc. AIME, 1968, 242, p 1619–1626 J.L. Uvira and J.J. Jonas, Hot Compression of Armco Irion and Silicon Steel, Trans. Met. Soc. AIME, 1968, 242, p 1619–1626
24.
Zurück zum Zitat A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: part I. Dynamic Recrystallization, Metall. Mater. Trans. A, 2008, 39, p 1359–1370CrossRef A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: part I. Dynamic Recrystallization, Metall. Mater. Trans. A, 2008, 39, p 1359–1370CrossRef
25.
Zurück zum Zitat H.J. McQueen, S. Yue, N.D. Ryan, and E. Fly, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Proc. Technol., 1995, 53, p 293–310CrossRef H.J. McQueen, S. Yue, N.D. Ryan, and E. Fly, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Proc. Technol., 1995, 53, p 293–310CrossRef
26.
Zurück zum Zitat H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRef H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRef
27.
Zurück zum Zitat T. Sakai, Dynamic Recrystallization Microstructure Under Hot Working Conditions, J. Mater. Proc. Technol., 1995, 53, p 349–361CrossRef T. Sakai, Dynamic Recrystallization Microstructure Under Hot Working Conditions, J. Mater. Proc. Technol., 1995, 53, p 349–361CrossRef
28.
Zurück zum Zitat D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46, p 69–80CrossRef D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46, p 69–80CrossRef
29.
Zurück zum Zitat A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization in Ultra-Fine Grained 304 Stainless Steel, Scr. Mater., 2000, 43, p 21–26CrossRef A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization in Ultra-Fine Grained 304 Stainless Steel, Scr. Mater., 2000, 43, p 21–26CrossRef
31.
Zurück zum Zitat U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48, p 171–273CrossRef U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48, p 171–273CrossRef
32.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 685–691 E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 685–691
33.
Zurück zum Zitat J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756CrossRef J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756CrossRef
34.
Zurück zum Zitat H. Miura, T. Sakai, S. Andiarwanto, and J.J. Jonas, Nucleation of Dynamic Recrystallization at Triple Junctions in Polycrystalline Copper, Philos. Mag., 2005, 85, p 2653–2659CrossRef H. Miura, T. Sakai, S. Andiarwanto, and J.J. Jonas, Nucleation of Dynamic Recrystallization at Triple Junctions in Polycrystalline Copper, Philos. Mag., 2005, 85, p 2653–2659CrossRef
35.
Zurück zum Zitat T.S. Oliveira, E.S. Silva, S.F. Rodrigues, C.C.F. Nascimento, V.S. Leal, and G.S. Reis, Softening Mechanisms of the AISI, 410 Martensitic Stainless Steel Under Hot Torsion Simulation, Mater. Res., 2017, 20, p 395–406CrossRef T.S. Oliveira, E.S. Silva, S.F. Rodrigues, C.C.F. Nascimento, V.S. Leal, and G.S. Reis, Softening Mechanisms of the AISI, 410 Martensitic Stainless Steel Under Hot Torsion Simulation, Mater. Res., 2017, 20, p 395–406CrossRef
36.
Zurück zum Zitat M.C. Mataya, E.R. Nilsson, E.L. Brown, and G. Krauss, Hot Working and Recrystallization of As-Cast 316L, Metall. Mater. Trans., 2003, 34A, p 1683–1703CrossRef M.C. Mataya, E.R. Nilsson, E.L. Brown, and G. Krauss, Hot Working and Recrystallization of As-Cast 316L, Metall. Mater. Trans., 2003, 34A, p 1683–1703CrossRef
37.
Zurück zum Zitat R.S. Sousa, E.S. Silva, A.M. Jorge, Jr., J.M. Cabrera, and O. Balancin, Dynamic Recovery and Dynamic Recrystallization Competition on a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial: Influence of Strain Rate and Temperature, Mater. Sci. Eng. A, 2013, 582, p 96–107CrossRef R.S. Sousa, E.S. Silva, A.M. Jorge, Jr., J.M. Cabrera, and O. Balancin, Dynamic Recovery and Dynamic Recrystallization Competition on a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial: Influence of Strain Rate and Temperature, Mater. Sci. Eng. A, 2013, 582, p 96–107CrossRef
38.
Zurück zum Zitat A. Najafizadeh, J.J. Jonas, G.R. Stewart, and E.I. Poliak, The Strain Dependence of Post Dynamic Recrystallization in 304 H Stainless Steel, Metall. Mater. Trans., 2006, 37A, p 899–1906 A. Najafizadeh, J.J. Jonas, G.R. Stewart, and E.I. Poliak, The Strain Dependence of Post Dynamic Recrystallization in 304 H Stainless Steel, Metall. Mater. Trans., 2006, 37A, p 899–1906
39.
Zurück zum Zitat M. Jafari and A. Najafizadeh, Correlation Between Zener–Hollomon Parameter and Necklace DRX During Hot Deformation of 316 Stainless Steel, Mater. Sci. Eng. A, 2009, 501, p 6–25CrossRef M. Jafari and A. Najafizadeh, Correlation Between Zener–Hollomon Parameter and Necklace DRX During Hot Deformation of 316 Stainless Steel, Mater. Sci. Eng. A, 2009, 501, p 6–25CrossRef
40.
Zurück zum Zitat Q.X. Daí, A.D. Wang, X.N. Cheng, and X.M. Lou, Stacking Fault Energy of Cryogenic Austenitic Steels, Chin. Phys., 2002, 11, p 596–600CrossRef Q.X. Daí, A.D. Wang, X.N. Cheng, and X.M. Lou, Stacking Fault Energy of Cryogenic Austenitic Steels, Chin. Phys., 2002, 11, p 596–600CrossRef
41.
Zurück zum Zitat B. Guo, G.I. Liu, X. Gao, L. Dong, R.J. Miao, and Q. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 1455–1461CrossRef B. Guo, G.I. Liu, X. Gao, L. Dong, R.J. Miao, and Q. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 1455–1461CrossRef
42.
Zurück zum Zitat G. Gottstein, E. Brunger, L. Lochte, J. Fischer-Buhner, and D Ponge, Dynamic Recrystallization in Metals and Intermetallics, Proceedings of 16th Risø, International Symposium on Materials Science: Microstructural and Crystallographic Aspects of Recrystallization (1995), p. 37–48. G. Gottstein, E. Brunger, L. Lochte, J. Fischer-Buhner, and D Ponge, Dynamic Recrystallization in Metals and Intermetallics, Proceedings of 16th Risø, International Symposium on Materials Science: Microstructural and Crystallographic Aspects of Recrystallization (1995), p. 37–48.
43.
Zurück zum Zitat M. Tikhonova, N. Enikeev, R.Z. Valiev, and A.R. Belyakov, Submicrocrystalline Austenitic Stainless Steel Processed by Cold or Warm High Pressure Torsion, Mater. Sci. For., 2016, 838–839, p 398–403 M. Tikhonova, N. Enikeev, R.Z. Valiev, and A.R. Belyakov, Submicrocrystalline Austenitic Stainless Steel Processed by Cold or Warm High Pressure Torsion, Mater. Sci. For., 2016, 838–839, p 398–403
44.
Zurück zum Zitat S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Processing Map for Hot Working of Stainless Steel Type AISI, 316L, Mater. Sci. Technol., 1993, 9, p 899–906CrossRef S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Processing Map for Hot Working of Stainless Steel Type AISI, 316L, Mater. Sci. Technol., 1993, 9, p 899–906CrossRef
45.
Zurück zum Zitat R.P. Ferreira, E.S. Silva, C.C.F. Nascimento, S.F. Rodrigues, C. Aranas, Jr., V.S. Leal, and G.S. Rei, Thermomechanical Behavior Modeling of a Cr-Ni-Mo-Mn-N Austenitic Stainless Steel, Mater. Sci. Appl., 2016, 7, p 803–822 R.P. Ferreira, E.S. Silva, C.C.F. Nascimento, S.F. Rodrigues, C. Aranas, Jr., V.S. Leal, and G.S. Rei, Thermomechanical Behavior Modeling of a Cr-Ni-Mo-Mn-N Austenitic Stainless Steel, Mater. Sci. Appl., 2016, 7, p 803–822
46.
Zurück zum Zitat H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31, p 1174–1179CrossRef H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31, p 1174–1179CrossRef
47.
Zurück zum Zitat H. Liang, H. Guo, K. Tan, X.L. Ning, G. Cao, J. Wang, and P. Zhen, Correlation Between Grain Size and Flow Stress During Steady-State Dynamic Recrystallization, Mater. Sci. Eng. A, 2015, 638, p 357–362CrossRef H. Liang, H. Guo, K. Tan, X.L. Ning, G. Cao, J. Wang, and P. Zhen, Correlation Between Grain Size and Flow Stress During Steady-State Dynamic Recrystallization, Mater. Sci. Eng. A, 2015, 638, p 357–362CrossRef
48.
Zurück zum Zitat F. Chen, Z.S. Cui, D.S. Sui et al., Recrystallization of 30 Cr2Ni4MoV Ultra-Super-Critical Rotor Steel During Hot Deformation. Part III: Metadynamic Recrystallization, Mater. Sci. Eng. A, 2012, 540, p 46–54CrossRef F. Chen, Z.S. Cui, D.S. Sui et al., Recrystallization of 30 Cr2Ni4MoV Ultra-Super-Critical Rotor Steel During Hot Deformation. Part III: Metadynamic Recrystallization, Mater. Sci. Eng. A, 2012, 540, p 46–54CrossRef
49.
Zurück zum Zitat J.Y. Lee, Y.M. Koo, S. Lu, L. Vitos, and S.K. Kwon, The Behaviour of Stacking Fault Energy Upon Interstitial Alloying, Sci. Rep., 2017, 7, p 11074CrossRef J.Y. Lee, Y.M. Koo, S. Lu, L. Vitos, and S.K. Kwon, The Behaviour of Stacking Fault Energy Upon Interstitial Alloying, Sci. Rep., 2017, 7, p 11074CrossRef
Metadaten
Titel
Thermomechanical Behavior of Biocompatible Austenitic Stainless Steels during Simulated Torsion Tests
verfasst von
Felipe Anderson S. de Aquino
Eden S. Silva
Samuel F. Rodrigues
Clodualdo Aranas Jr.
Fulvio Siciliano
Samir S. Coutinho
Gedeon S. Reis
Publikationsdatum
18.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04324-4

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Engineering and Performance 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.