Skip to main content
Erschienen in: Journal of Iron and Steel Research International 8/2021

03.06.2021 | Original Paper

Three-dimensional numerical simulation of flow and splash behavior in an oxygen coal combustion melting and separating furnace

verfasst von: Kai Zhao, Yao-zong Shen, Zheng Kong, Qiao-rong Zhang, Yu-zhu Zhang, Yan Shi, Chang-liang Zhen, Xue-feng Shi, Xing-hua Zhang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The change of bubbles and the position of the tuyere in an oxygen coal combustion melting and separating furnace affect the flow and splash behavior of the molten pool. To analyze this problem further, a three-dimensional numerical simulation method was used to explore the behavior and change of the flow field inside the molten pool during double-row tuyere injection. In addition, the arrangement of the tuyere was changed for a more detailed understanding of the internal phase distribution and splashing in a molten pool. The results indicated that under three-dimensional numerical simulation conditions, bubbles rise after leaving the tuyere and break on the surface of the molten pool, which results in certain fluctuations in the nearby melt. During the injection process of the tuyere, the meteorological accumulation in the middle part of the molten pool formed part of the foam slag because of the influence of surface tension. When the layout of the upper and lower exhaust tuyeres was changed from staggered to symmetrical, or when the spacing of the upper and lower exhaust tuyeres changed, it had an effect on the phase distribution and splash behavior.
Literatur
[1]
Zurück zum Zitat F. Li, M.S. Chu, J. Tang, Z.G. Liu, Y.S. Zhou, Hebei Metallurgy (2019) No. 10, 8−15. F. Li, M.S. Chu, J. Tang, Z.G. Liu, Y.S. Zhou, Hebei Metallurgy (2019) No. 10, 8−15.
[2]
Zurück zum Zitat X.G. Zhang, L.J. Jia, Metallurgy and Materials 39 (2019) No. 4, 90−91. X.G. Zhang, L.J. Jia, Metallurgy and Materials 39 (2019) No. 4, 90−91.
[3]
Zurück zum Zitat J.S. Tao, Y.C. Hong, World Metals 2020-01-07 (B02). J.S. Tao, Y.C. Hong, World Metals 2020-01-07 (B02).
[4]
Zurück zum Zitat A. Yasen, Research on reducing the cost of smelting high-silicon and high-phosphorus COREX molten iron in converter, University of Science and Technology Beijing, Beijing, China, 2019. A. Yasen, Research on reducing the cost of smelting high-silicon and high-phosphorus COREX molten iron in converter, University of Science and Technology Beijing, Beijing, China, 2019.
[5]
Zurück zum Zitat J.J. Gao, Pre-reduction of vanadium−titanium magnetite rotary kiln-basic research on full oxygen bath smelting, Central Iron and Steel Research Institute, Beijing, China, 2018. J.J. Gao, Pre-reduction of vanadium−titanium magnetite rotary kiln-basic research on full oxygen bath smelting, Central Iron and Steel Research Institute, Beijing, China, 2018.
[6]
Zurück zum Zitat J.J. Gao, X.Y. Wan, Y.H. Qi, F. Wang, J. Iron Steel Res. 30 (2018) 91−96. J.J. Gao, X.Y. Wan, Y.H. Qi, F. Wang, J. Iron Steel Res. 30 (2018) 91−96.
[7]
Zurück zum Zitat F.H. Liu, S.B. Wang, J.X. Xu, H.T. Wang, H. Wang, J. Kunming Univ. Sci. Technol. (Nat. Sci. Ed.) 40 (2015) No. 1, 60−66. F.H. Liu, S.B. Wang, J.X. Xu, H.T. Wang, H. Wang, J. Kunming Univ. Sci. Technol. (Nat. Sci. Ed.) 40 (2015) No. 1, 60−66.
[8]
Zurück zum Zitat M.P. Davis, R.J. Dry, M.P. Schwarz, in: Proceedings of the ISS Technology Conference, Indianapolis, USA, 2003, pp. 2−8. M.P. Davis, R.J. Dry, M.P. Schwarz, in: Proceedings of the ISS Technology Conference, Indianapolis, USA, 2003, pp. 2−8.
[9]
[10]
Zurück zum Zitat ] P. Buliński, J. Smolka, S. Golak, R. Przyłucki, M. Palacz, G. Siwiec, B. Melka, L. Blacha, Int. J. Heat Mass Transfer 126 (2018) 980−992.CrossRef ] P. Buliński, J. Smolka, S. Golak, R. Przyłucki, M. Palacz, G. Siwiec, B. Melka, L. Blacha, Int. J. Heat Mass Transfer 126 (2018) 980−992.CrossRef
[11]
Zurück zum Zitat K. Fukagata, N. Kasagi, P. Ua-arayaporn, T. Himeno, Int. J. Heat Fluid Flow 28 (2007) 72−82.CrossRef K. Fukagata, N. Kasagi, P. Ua-arayaporn, T. Himeno, Int. J. Heat Fluid Flow 28 (2007) 72−82.CrossRef
[12]
Zurück zum Zitat Y.Z. Hou, G.B. Zhang, Y.Z. Qin, Q. Du, K. Jiao, Int. J. Hydrogen Energy 42 (2017) 3250−3258.CrossRef Y.Z. Hou, G.B. Zhang, Y.Z. Qin, Q. Du, K. Jiao, Int. J. Hydrogen Energy 42 (2017) 3250−3258.CrossRef
[13]
Zurück zum Zitat W.C. Liu, Numerical simulation of gas−liquid two-phase flow in a smoke furnace, Central South University, Changsha, China, 2014. W.C. Liu, Numerical simulation of gas−liquid two-phase flow in a smoke furnace, Central South University, Changsha, China, 2014.
[14]
Zurück zum Zitat H.C. Chuang, J.H. Kuo, C.C. Huang, S.H. Liu, W.S. Hwang, ISIJ Int. 46 (2006) 1158−1164.CrossRef H.C. Chuang, J.H. Kuo, C.C. Huang, S.H. Liu, W.S. Hwang, ISIJ Int. 46 (2006) 1158−1164.CrossRef
[15]
Zurück zum Zitat D.Y. Yin, W.L. Cheng, J.J. Xie, K.F. Feng, B. Wang, J.Y. Zhang, S.B. Zheng, X. Hong, Chin. J. Process Eng. 10 (2010) 1066−1070. D.Y. Yin, W.L. Cheng, J.J. Xie, K.F. Feng, B. Wang, J.Y. Zhang, S.B. Zheng, X. Hong, Chin. J. Process Eng. 10 (2010) 1066−1070.
[16]
Zurück zum Zitat H.J. Yan, F.K. Liu, Z.Y. Zhang, Q. Gao, L. Liu, Z.X. Cui, D.B. Shen, Chin. J. Nonferrous Met. 22 (2012) 2393−2400.CrossRef H.J. Yan, F.K. Liu, Z.Y. Zhang, Q. Gao, L. Liu, Z.X. Cui, D.B. Shen, Chin. J. Nonferrous Met. 22 (2012) 2393−2400.CrossRef
[17]
Zurück zum Zitat L.Q. Deng, M.M. Li, Q. Li, Z.S. Zou, J. Mater. Metall. 15 (2016) 25−32. L.Q. Deng, M.M. Li, Q. Li, Z.S. Zou, J. Mater. Metall. 15 (2016) 25−32.
[18]
Zurück zum Zitat P. Yan, H.B. Jin, G.X. He, X.Y. Guo, L. Ma, S.H. Yang, R.Y. Zhang, Chem. Eng. Res. Des. 154 (2020) 47−59.CrossRef P. Yan, H.B. Jin, G.X. He, X.Y. Guo, L. Ma, S.H. Yang, R.Y. Zhang, Chem. Eng. Res. Des. 154 (2020) 47−59.CrossRef
[19]
Zurück zum Zitat K.J. Vachaparambil, K.E. Einarsrud, Appl. Math. Modell. 81 (2020) 690−710.CrossRef K.J. Vachaparambil, K.E. Einarsrud, Appl. Math. Modell. 81 (2020) 690−710.CrossRef
[20]
Zurück zum Zitat L.Y. Wu, L.B. Liu, X.T. Han, Q.W. Li, W.B. Yang, Chin. Phys. B 28 (2019) 104702.CrossRef L.Y. Wu, L.B. Liu, X.T. Han, Q.W. Li, W.B. Yang, Chin. Phys. B 28 (2019) 104702.CrossRef
[21]
Zurück zum Zitat M.Y. Zhu, Z.Z. Cai, H.Q. Yu, J. Iron Steel Res. Int. 20 (2013) No. 3, 6−17.CrossRef M.Y. Zhu, Z.Z. Cai, H.Q. Yu, J. Iron Steel Res. Int. 20 (2013) No. 3, 6−17.CrossRef
[23]
Zurück zum Zitat J. Anagnostopoulos, G. Bergeles, Metall. Mater. Trans. B 30 (1999) 1095−1105.CrossRef J. Anagnostopoulos, G. Bergeles, Metall. Mater. Trans. B 30 (1999) 1095−1105.CrossRef
[24]
Zurück zum Zitat B.E. Launder, D.B. Spalding, Comput. Methods Appl. Mech. Engrg. 3 (1974) 269−289.CrossRef B.E. Launder, D.B. Spalding, Comput. Methods Appl. Mech. Engrg. 3 (1974) 269−289.CrossRef
Metadaten
Titel
Three-dimensional numerical simulation of flow and splash behavior in an oxygen coal combustion melting and separating furnace
verfasst von
Kai Zhao
Yao-zong Shen
Zheng Kong
Qiao-rong Zhang
Yu-zhu Zhang
Yan Shi
Chang-liang Zhen
Xue-feng Shi
Xing-hua Zhang
Publikationsdatum
03.06.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 8/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00615-0

Weitere Artikel der Ausgabe 8/2021

Journal of Iron and Steel Research International 8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.