Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 6/2019

01.11.2019

Three-Dimensional Simulation of an Ion Charge Exchange with Metal Surfaces

verfasst von: I. K. Gainullin, M. A. Sonkin

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ion beams are used to diagnose and modify the surface of solids. Simulation of an ion charge exchange with the surface is necessary not only for understanding its fundamental laws but also for quantitative diagnostics since charged particles (ions) are recorded in most experimental setups. Due to the inevitable substantial numerical complexity in the direct simulation of the charge exchange, until recently only approximate one- and two-dimensional methods had been used. A few years ago, the authors created a program code that implements a direct three-dimensional simulation for graphical processing units. This article presents some examples of the calculations and studies the correct setting of the initial conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The energy position (level) of an atomic particle is the potential energy of an electron located on an atomic particle. For an isolated neutral atom, its energy position is equal to the ionization energy.
 
Literatur
1.
Zurück zum Zitat Yu. V. Martynenko, “On the theory of sputtering of single crystals,” Sov. Phys. Solid State 6, 1581 (1964). Yu. V. Martynenko, “On the theory of sputtering of single crystals,” Sov. Phys. Solid State 6, 1581 (1964).
2.
Zurück zum Zitat V. E. Yurasova, V. S. Chernysh, M. V. Kuvakin, and L. B. Shelyakin, “Change in the sputtering of single-crystal nickel on going through the Curie point,” JETP Lett. 21, 79–92 (1975). V. E. Yurasova, V. S. Chernysh, M. V. Kuvakin, and L. B. Shelyakin, “Change in the sputtering of single-crystal nickel on going through the Curie point,” JETP Lett. 21, 79–92 (1975).
3.
Zurück zum Zitat J. Los and J. J. C. Geerlings, “Charge exchange in atom-surface collisions,” Phys. Rep. 190, 133–190 (1990).CrossRef J. Los and J. J. C. Geerlings, “Charge exchange in atom-surface collisions,” Phys. Rep. 190, 133–190 (1990).CrossRef
4.
Zurück zum Zitat J. P. Gauyacq, A. G. Borisov, and D. Teillet-Billy, in Formation/Destruction of Negative Ions in Heavy Particle-Surface Collisions, Ed. by V. A. Esaulov (Cambridge Univ. Press, Cambridge, 1996). J. P. Gauyacq, A. G. Borisov, and D. Teillet-Billy, in Formation/Destruction of Negative Ions in Heavy Particle-Surface Collisions, Ed. by V. A. Esaulov (Cambridge Univ. Press, Cambridge, 1996).
5.
Zurück zum Zitat H. Chakraborty, T. Niederhausen, and U. Thumm, “Resonant neutralization of H- near Cu surfaces: effects of the surface symmetry and ion trajectory,” Phys. Rev. A 70, 052903 (2004).CrossRef H. Chakraborty, T. Niederhausen, and U. Thumm, “Resonant neutralization of H- near Cu surfaces: effects of the surface symmetry and ion trajectory,” Phys. Rev. A 70, 052903 (2004).CrossRef
6.
Zurück zum Zitat E. Marenkov, V. Kurnaev, A. Lasa, and K. Nordlund, “On the molecular effect in hydrogen molecular ions penetration through thin films,” Nucl. Instrum. Methods Phys. Res., Sect. B 269, 876–880 (2012). E. Marenkov, V. Kurnaev, A. Lasa, and K. Nordlund, “On the molecular effect in hydrogen molecular ions penetration through thin films,” Nucl. Instrum. Methods Phys. Res., Sect. B 269, 876–880 (2012).
7.
Zurück zum Zitat P. A. Karaseov, K. V. Karabeshkin, A. I. Titov, V. B. Shilov, G. M. Ermolaeva, V. G. Maslov, and A. O. Orlova, “Nonlinear optical effect upon the irradiation of GaN with cluster ions,” Semiconductors 48, 446–450 (2014).CrossRef P. A. Karaseov, K. V. Karabeshkin, A. I. Titov, V. B. Shilov, G. M. Ermolaeva, V. G. Maslov, and A. O. Orlova, “Nonlinear optical effect upon the irradiation of GaN with cluster ions,” Semiconductors 48, 446–450 (2014).CrossRef
8.
Zurück zum Zitat N. N. Andrianova, A. M. Borisov, E. S. Mashkova, and V. I. Shulga, “Influence of surface corrugation on the sputtering of carbon materials under high-fluence ion bombardment,” J. Clin. Invest. 10, 412 (2016). N. N. Andrianova, A. M. Borisov, E. S. Mashkova, and V. I. Shulga, “Influence of surface corrugation on the sputtering of carbon materials under high-fluence ion bombardment,” J. Clin. Invest. 10, 412 (2016).
9.
Zurück zum Zitat V. V. Evstifeev and I. V. Ivanov, “Computer simulation of Cs+ ion scattering from a W (100) surface,” Surf. Sci. 217, L373–L376 (1989).CrossRef V. V. Evstifeev and I. V. Ivanov, “Computer simulation of Cs+ ion scattering from a W (100) surface,” Surf. Sci. 217, L373–L376 (1989).CrossRef
10.
Zurück zum Zitat A. Tolstogouzov, S. Daolio, and C. Pagura, “Hyperthermal and low-energy Ne+ scattering from Au and Pt surfaces,” Nucl. Instrum. Methods Phys. Res., Sect. B 183, 116–127 (2001). A. Tolstogouzov, S. Daolio, and C. Pagura, “Hyperthermal and low-energy Ne+ scattering from Au and Pt surfaces,” Nucl. Instrum. Methods Phys. Res., Sect. B 183, 116–127 (2001).
11.
Zurück zum Zitat A. Tolstogouzov, S. Daolio, and C. Pagura, “Evaluation of inelastic energy losses for low-energy Ne+ ions scattered from aluminum and silicon surfaces,” Surf. Sci. 441, 213–222 (1999).CrossRef A. Tolstogouzov, S. Daolio, and C. Pagura, “Evaluation of inelastic energy losses for low-energy Ne+ ions scattered from aluminum and silicon surfaces,” Surf. Sci. 441, 213–222 (1999).CrossRef
12.
Zurück zum Zitat I. K. Gainullin, “Slow ion scattering by crystal surfaces and nanostructures,” J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 6, 122–126 (2012).CrossRef I. K. Gainullin, “Slow ion scattering by crystal surfaces and nanostructures,” J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 6, 122–126 (2012).CrossRef
13.
Zurück zum Zitat I. K. Gainullin, E. Yu. Usman, Y. W. Song, and I. F. Urazgil’din, “Electron-exchange processes between hydrogen negative ion and thin aluminum films,” Vacuum 72, 263–268 (2003).CrossRef I. K. Gainullin, E. Yu. Usman, Y. W. Song, and I. F. Urazgil’din, “Electron-exchange processes between hydrogen negative ion and thin aluminum films,” Vacuum 72, 263–268 (2003).CrossRef
14.
Zurück zum Zitat A. R. Canario et al., “Nonadiabatic effects in atom-surface charge transfer,” Phys. Rev. B 71, 121401 (2005).CrossRef A. R. Canario et al., “Nonadiabatic effects in atom-surface charge transfer,” Phys. Rev. B 71, 121401 (2005).CrossRef
15.
Zurück zum Zitat I. K. Gainullin, E. Y. Usman, and I. F. Urazgil’din, “Electron exchange between hydrogen ion and thin disk: quantum-size effect observation,” Nucl. Instrum. Methods Phys. Res., Sect. B 232, 22–26 (2005). I. K. Gainullin, E. Y. Usman, and I. F. Urazgil’din, “Electron exchange between hydrogen ion and thin disk: quantum-size effect observation,” Nucl. Instrum. Methods Phys. Res., Sect. B 232, 22–26 (2005).
16.
Zurück zum Zitat A. A. Magunov, D. K. Shestakov, I. K. Gainullin, and I. F. Urazgildin, “Quantum size effect during the electron exchange between a negative hydrogen ion and a cluster of aluminum atoms,” J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 2, 764–767 (2008).CrossRef A. A. Magunov, D. K. Shestakov, I. K. Gainullin, and I. F. Urazgildin, “Quantum size effect during the electron exchange between a negative hydrogen ion and a cluster of aluminum atoms,” J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 2, 764–767 (2008).CrossRef
17.
Zurück zum Zitat I. K. Gainullin, “Three-dimensional modeling of resonant charge transfer between ion beams and metallic surfaces,” Phys. Rev. A 95, 052705 (2017).CrossRef I. K. Gainullin, “Three-dimensional modeling of resonant charge transfer between ion beams and metallic surfaces,” Phys. Rev. A 95, 052705 (2017).CrossRef
18.
Zurück zum Zitat I. K. Gainullin and V. A. Khodyrev, “Quantum-hydrodynamic approach to the problem of electron exchange between atomic particles and nanosystems,” J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech., No. 6, 1126–1129 (2011). I. K. Gainullin and V. A. Khodyrev, “Quantum-hydrodynamic approach to the problem of electron exchange between atomic particles and nanosystems,” J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech., No. 6, 1126–1129 (2011).
19.
Zurück zum Zitat I. K. Gainullin and A. L. Klavsyuk, “Electron capture in the collision of a proton with a hydrogen atom,” Bull. Russ. Acad. Sci.: Phys. 76, 542–545 (2012).CrossRef I. K. Gainullin and A. L. Klavsyuk, “Electron capture in the collision of a proton with a hydrogen atom,” Bull. Russ. Acad. Sci.: Phys. 76, 542–545 (2012).CrossRef
20.
Zurück zum Zitat P. J. Jennings, R. O. Jones, and M. Weinert, “Surface barrier for electrons in metals,” Phys. Rev. B 37, 6113 (1988).CrossRef P. J. Jennings, R. O. Jones, and M. Weinert, “Surface barrier for electrons in metals,” Phys. Rev. B 37, 6113 (1988).CrossRef
21.
Zurück zum Zitat E. V. Chulkov, V. M. Silkin, and P. M. Echenique, “Image potential states on metal surfaces: binding energies and wave functions,” Surf. Sci. 437, 330–352 (1999).CrossRef E. V. Chulkov, V. M. Silkin, and P. M. Echenique, “Image potential states on metal surfaces: binding energies and wave functions,” Surf. Sci. 437, 330–352 (1999).CrossRef
22.
Zurück zum Zitat J. N. Bardsley, “Pseudopotentials in atomic and molecular physics,” Case Stud. At. Phys. 4, 299–368 (1974). J. N. Bardsley, “Pseudopotentials in atomic and molecular physics,” Case Stud. At. Phys. 4, 299–368 (1974).
23.
Zurück zum Zitat J. S. Cohen and G. Fiorentini, “Stripping of H- in low-energy collisions with antiprotons: classical-trajectory Monte Carlo calculation,” Phys. Rev. A 33, 1590 (1986).CrossRef J. S. Cohen and G. Fiorentini, “Stripping of H- in low-energy collisions with antiprotons: classical-trajectory Monte Carlo calculation,” Phys. Rev. A 33, 1590 (1986).CrossRef
24.
Zurück zum Zitat A. G. Borisov, D. Teillet-Billy, J. P. Gauyacq, H. Winter, and G. Dierkcs, Phys. Rev. B 54 (17), 166 (1996).CrossRef A. G. Borisov, D. Teillet-Billy, J. P. Gauyacq, H. Winter, and G. Dierkcs, Phys. Rev. B 54 (17), 166 (1996).CrossRef
25.
Zurück zum Zitat B. Bahrim, B. Makarenko, and J. W. Rabalais, “Band gap effect on H- ion survival near Cu surfaces,” Surf. Sci. 594, 62–69 (2005).CrossRef B. Bahrim, B. Makarenko, and J. W. Rabalais, “Band gap effect on H- ion survival near Cu surfaces,” Surf. Sci. 594, 62–69 (2005).CrossRef
26.
Zurück zum Zitat L. Y. Ming and N. D. Lang, “Direct evidence of electron tunneling in the ionization of sputtered atoms,” Phys. Rev. Lett. 50, 127 (1983).CrossRef L. Y. Ming and N. D. Lang, “Direct evidence of electron tunneling in the ionization of sputtered atoms,” Phys. Rev. Lett. 50, 127 (1983).CrossRef
27.
Zurück zum Zitat A. Henriet and F. Masnou-Seeuws, “Model potential calculations for the ground, excited and Rydberg 2Σ states of Li2+, Na2+ and K2+: Core polarization effects,” Chem. Phys. Lett. 101, 535–540 (1983).CrossRef A. Henriet and F. Masnou-Seeuws, “Model potential calculations for the ground, excited and Rydberg 2Σ states of Li2+, Na2+ and K2+: Core polarization effects,” Chem. Phys. Lett. 101, 535–540 (1983).CrossRef
28.
Zurück zum Zitat H. Chakraborty, T. Niederhausen, and U. Thumm, “Effects of the surface Miller index on the resonant neutralization of hydrogen anions near Ag surfaces,” Phys. Rev. A 69, 052901 (2004).CrossRef H. Chakraborty, T. Niederhausen, and U. Thumm, “Effects of the surface Miller index on the resonant neutralization of hydrogen anions near Ag surfaces,” Phys. Rev. A 69, 052901 (2004).CrossRef
29.
Zurück zum Zitat J. N. M. van Wunnik et al., “Effect of parallel velocity on charge fraction in ion-surface scattering,” Surf. Sci. 126, 618–623 (1983).CrossRef J. N. M. van Wunnik et al., “Effect of parallel velocity on charge fraction in ion-surface scattering,” Surf. Sci. 126, 618–623 (1983).CrossRef
30.
Zurück zum Zitat A. G. Borisov, D. Teillet-Billy, and J. P. Gauyacq, “Dynamical resonant electron capture in atom surface collisions: H- formation in H-Al (111) collisions,” Phys. Rev. Lett. 68, 2842 (1992).CrossRef A. G. Borisov, D. Teillet-Billy, and J. P. Gauyacq, “Dynamical resonant electron capture in atom surface collisions: H- formation in H-Al (111) collisions,” Phys. Rev. Lett. 68, 2842 (1992).CrossRef
31.
Zurück zum Zitat V. A. Ermoshin and A. K. Kazansky, “Wave packet study of H- decay in front of a metal surface,” Phys. Lett. A 218, 99–104 (1996).CrossRef V. A. Ermoshin and A. K. Kazansky, “Wave packet study of H- decay in front of a metal surface,” Phys. Lett. A 218, 99–104 (1996).CrossRef
32.
Zurück zum Zitat H. Winter, “Collisions of atoms and ions with surfaces under grazing incidence,” Phys. Rep. 367, 387–582 (2002).CrossRef H. Winter, “Collisions of atoms and ions with surfaces under grazing incidence,” Phys. Rep. 367, 387–582 (2002).CrossRef
33.
Zurück zum Zitat A. G. Borisov, A. K. Kazansky, and J. P. Gauyacq, “Finite time effect in the charge transfer process during an ion-metal surface collision,” Phys. Rev. Lett. 80, 1996 (1998).CrossRef A. G. Borisov, A. K. Kazansky, and J. P. Gauyacq, “Finite time effect in the charge transfer process during an ion-metal surface collision,” Phys. Rev. Lett. 80, 1996 (1998).CrossRef
35.
Zurück zum Zitat I. K. Gainullin, “Towards quantitative LEIS with alkali metal ions,” Surf. Sci. 677, 324–332 (2018).CrossRef I. K. Gainullin, “Towards quantitative LEIS with alkali metal ions,” Surf. Sci. 677, 324–332 (2018).CrossRef
36.
Zurück zum Zitat C. Leforestier et al., “A comparison of different propagation schemes for the time dependent Schrodinger equation,” J. Comput. Phys. 94, 59–80 (1991).CrossRefMathSciNetMATH C. Leforestier et al., “A comparison of different propagation schemes for the time dependent Schrodinger equation,” J. Comput. Phys. 94, 59–80 (1991).CrossRefMathSciNetMATH
37.
Zurück zum Zitat I. K. Gainullin and M. A. Sonkin, “High-performance parallel solver for 3D time-dependent Schrödinger equation for large-scale nanosystems,” Comput. Phys. Commun. 188, 68–75 (2015).CrossRefMathSciNetMATH I. K. Gainullin and M. A. Sonkin, “High-performance parallel solver for 3D time-dependent Schrödinger equation for large-scale nanosystems,” Comput. Phys. Commun. 188, 68–75 (2015).CrossRefMathSciNetMATH
38.
Zurück zum Zitat T. Iitaka, “Solving the time-dependent Schrödinger equation numerically,” Phys. Rev. E 49, 4684 (1994).CrossRef T. Iitaka, “Solving the time-dependent Schrödinger equation numerically,” Phys. Rev. E 49, 4684 (1994).CrossRef
39.
Zurück zum Zitat I. K. Gainullin, “High-performance GPU parallel solver for 3D modeling of electron transfer during ion-surface interaction,” Comput. Phys. Commun. 210, 72–78 (2017).CrossRefMATH I. K. Gainullin, “High-performance GPU parallel solver for 3D modeling of electron transfer during ion-surface interaction,” Comput. Phys. Commun. 210, 72–78 (2017).CrossRefMATH
40.
Zurück zum Zitat I. Foster, Designing and Building Parallel Programs (Addison Wesley, Boston, 1995), Vol. 78.MATH I. Foster, Designing and Building Parallel Programs (Addison Wesley, Boston, 1995), Vol. 78.MATH
41.
Zurück zum Zitat P. Micikevicius, “3D finite difference computation on GPUs using CUDA,” in Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units (ACM, 2009), pp. 79–84. P. Micikevicius, “3D finite difference computation on GPUs using CUDA,” in Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units (ACM, 2009), pp. 79–84.
42.
Zurück zum Zitat E. R. Amanbaev, I. K. Gainullin, E. Y. Zykova, and I. F. Urazgildin, “Electron exchange between atomic particle and thin metal island films,” Thin Solid Films 519, 4737–4741 (2011).CrossRef E. R. Amanbaev, I. K. Gainullin, E. Y. Zykova, and I. F. Urazgildin, “Electron exchange between atomic particle and thin metal island films,” Thin Solid Films 519, 4737–4741 (2011).CrossRef
43.
Zurück zum Zitat I. K. Gainullin and M. A. Sonkin, “Three-dimensional effects in resonant charge transfer between atomic particles and nanosystems,” Phys. Rev. A 92, 022710 (2015).CrossRef I. K. Gainullin and M. A. Sonkin, “Three-dimensional effects in resonant charge transfer between atomic particles and nanosystems,” Phys. Rev. A 92, 022710 (2015).CrossRef
44.
Zurück zum Zitat D. K. Shestakov, I. K. Gainullin, and I. F. Urazgil’din, “Features of the electron exchange under grazing scattering of H- ions from a thin aluminum disk,” J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 3, 33–37 (2009).CrossRef D. K. Shestakov, I. K. Gainullin, and I. F. Urazgil’din, “Features of the electron exchange under grazing scattering of H- ions from a thin aluminum disk,” J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 3, 33–37 (2009).CrossRef
45.
Zurück zum Zitat D. K. Shestakov, T. Yu. Polivnikova, I. K. Gainullin, and I. F. Urazgildin, “Electron exchange between an H- ion and a spherical cluster of aluminum atoms,” Nucl. Instrum. Methods Phys. Res., Sect. B 267, 2596–2600 (2009). D. K. Shestakov, T. Yu. Polivnikova, I. K. Gainullin, and I. F. Urazgildin, “Electron exchange between an H- ion and a spherical cluster of aluminum atoms,” Nucl. Instrum. Methods Phys. Res., Sect. B 267, 2596–2600 (2009).
46.
Zurück zum Zitat E. R. Amanbaev, D. K. Shestakov, and I. K. Gainullin, “Features of electron exchange under grazing scattering of negative hydrogen ions by a spherical cluster of aluminum atoms,” J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 3, 865 (2009).CrossRef E. R. Amanbaev, D. K. Shestakov, and I. K. Gainullin, “Features of electron exchange under grazing scattering of negative hydrogen ions by a spherical cluster of aluminum atoms,” J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 3, 865 (2009).CrossRef
47.
Zurück zum Zitat I. K. Gainullin and I. F. Urazgildin, “Quantum size effect in the electron exchange between a H– ion and a thin metal disk,” Phys. Rev. B 74, 205403 (2006).CrossRef I. K. Gainullin and I. F. Urazgildin, “Quantum size effect in the electron exchange between a H ion and a thin metal disk,” Phys. Rev. B 74, 205403 (2006).CrossRef
48.
Zurück zum Zitat E. Yu. Zykova, A. A. Khaidarov, I. P. Ivanenko, and I. K. Gainullin, “Formation of aluminum island films under electron irradiation of a sapphire surface,” J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 6, 877–881 (2012).CrossRef E. Yu. Zykova, A. A. Khaidarov, I. P. Ivanenko, and I. K. Gainullin, “Formation of aluminum island films under electron irradiation of a sapphire surface,” J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 6, 877–881 (2012).CrossRef
49.
Zurück zum Zitat J. H. Macek et al., “Origin, evolution, and imaging of vortices in atomic processes,” Phys. Rev. Lett. 102, 143201 (2009).CrossRef J. H. Macek et al., “Origin, evolution, and imaging of vortices in atomic processes,” Phys. Rev. Lett. 102, 143201 (2009).CrossRef
50.
Zurück zum Zitat L. Guillemot and V. A. Esaulov, “Interaction time dependence of electron tunneling processes between an atom and a surface,” Phys. Rev. Lett. 82, 4552 (1999).CrossRef L. Guillemot and V. A. Esaulov, “Interaction time dependence of electron tunneling processes between an atom and a surface,” Phys. Rev. Lett. 82, 4552 (1999).CrossRef
Metadaten
Titel
Three-Dimensional Simulation of an Ion Charge Exchange with Metal Surfaces
verfasst von
I. K. Gainullin
M. A. Sonkin
Publikationsdatum
01.11.2019
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 6/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219060048

Weitere Artikel der Ausgabe 6/2019

Mathematical Models and Computer Simulations 6/2019 Zur Ausgabe

Premium Partner