Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 6/2019

01.11.2019

Variational Entropic Regularization of the Discontinuous Galerkin Method for Gasdynamic Equations

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A constructive version of the discontinuous Galerkin method (DGM) of arbitrary orders of accuracy to solve gasdynamic (GD) equations is proposed. This DGM is based on the new variational principle of entropic regularization ensuring the implementation of discrete analogs of the conservation laws of mass, momentum, total energy, and entropic inequality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. G. Kulikovsky, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Taylor Francis, London, 2000). A. G. Kulikovsky, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Taylor Francis, London, 2000).
2.
Zurück zum Zitat L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd ed. (Fizmatlit, Moscow, 2001; Butterworth-Heinemann, 1987). L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd ed. (Fizmatlit, Moscow, 2001; Butterworth-Heinemann, 1987).
3.
Zurück zum Zitat S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian]. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].
4.
Zurück zum Zitat B. Cockburn, “An introduction to the discontinuous Galerkin method for convection - dominated problems,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lect. Notes Math. 1697, 151–268 (1998).MATH B. Cockburn, “An introduction to the discontinuous Galerkin method for convection - dominated problems,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lect. Notes Math. 1697, 151–268 (1998).MATH
5.
Zurück zum Zitat B. Cockburn, G. E. Karniadakis, and Ch.-W. Shu, “The development of discontinuous Galerkin methods,” IMA Preprint Ser. No. 1662 (Inst. Math. Appl., Univ. Minnisota, 1999). B. Cockburn, G. E. Karniadakis, and Ch.-W. Shu, “The development of discontinuous Galerkin methods,” IMA Preprint Ser. No. 1662 (Inst. Math. Appl., Univ. Minnisota, 1999).
6.
Zurück zum Zitat B. Cockburn and Ch.-W. Shu, “Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems,” J. Sci. Comput. 16, 173–261 (2001).MathSciNetCrossRef B. Cockburn and Ch.-W. Shu, “Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems,” J. Sci. Comput. 16, 173–261 (2001).MathSciNetCrossRef
7.
Zurück zum Zitat D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM J. Numer. Anal. 29, 1749–1779 (2002).MathSciNetCrossRef D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM J. Numer. Anal. 29, 1749–1779 (2002).MathSciNetCrossRef
8.
Zurück zum Zitat M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of averaging to smooth the solution in DG method,” Preprint KIAM RAS No. 89 (Keldysh Inst. Appl. Math., Moscow, 2017). M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of averaging to smooth the solution in DG method,” Preprint KIAM RAS No. 89 (Keldysh Inst. Appl. Math., Moscow, 2017).
9.
Zurück zum Zitat M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG,” Math. Model. Comput. Simul. 5, 346–349 (2013).MathSciNetCrossRef M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG,” Math. Model. Comput. Simul. 5, 346–349 (2013).MathSciNetCrossRef
10.
Zurück zum Zitat M. M. Krasnov, P. A. Kuchugov, M. E. Ladonkina, and V. F. Tishkin, “A generalization of the Godunov method using piecewise polynomial approximations in the multidimensional case,” in Supercomputing and Mathematical Modeling, Proceedings of the 16th International Conference, Oct. 3–7,2016, Ed. by R. M. Shagaliev (RFIATS-VNIIEF, Sarov, 2017), pp. 168-183. M. M. Krasnov, P. A. Kuchugov, M. E. Ladonkina, and V. F. Tishkin, “A generalization of the Godunov method using piecewise polynomial approximations in the multidimensional case,” in Supercomputing and Mathematical Modeling, Proceedings of the 16th International Conference, Oct. 3–7,2016, Ed. by R. M. Shagaliev (RFIATS-VNIIEF, Sarov, 2017), pp. 168-183.
11.
Zurück zum Zitat M. E. Ladonkina and V. F. Tishkin, “On Godunov type methods of high order of accuracy,” Dokl. Math. 91, 189–192 (2015).MathSciNetCrossRef M. E. Ladonkina and V. F. Tishkin, “On Godunov type methods of high order of accuracy,” Dokl. Math. 91, 189–192 (2015).MathSciNetCrossRef
12.
Zurück zum Zitat V. F. Tishkin, V. T. Zhukov, and E. E. Myshetskaya, “Justification of Godunov’s scheme in the multidimensional case,” Math. Model. Comput. Simul. 8, 548–556 (2016).MathSciNetCrossRef V. F. Tishkin, V. T. Zhukov, and E. E. Myshetskaya, “Justification of Godunov’s scheme in the multidimensional case,” Math. Model. Comput. Simul. 8, 548–556 (2016).MathSciNetCrossRef
13.
Zurück zum Zitat P. G. le Floch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal. 40, 1968–1992 (2002).MathSciNetCrossRef P. G. le Floch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal. 40, 1968–1992 (2002).MathSciNetCrossRef
14.
Zurück zum Zitat F. Lagoutiere, “A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction,” C. R. Math. 338, 549–554 (2004).MathSciNetCrossRef F. Lagoutiere, “A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction,” C. R. Math. 338, 549–554 (2004).MathSciNetCrossRef
15.
Zurück zum Zitat H. Zakerzadeh and U. S. Fjordholm, “High-order accurate, fully discrete entropy stable schemes for scalar conservation laws,” IMA J. Numer. Anal. 36, 633–654 (2016).MathSciNetCrossRef H. Zakerzadeh and U. S. Fjordholm, “High-order accurate, fully discrete entropy stable schemes for scalar conservation laws,” IMA J. Numer. Anal. 36, 633–654 (2016).MathSciNetCrossRef
16.
Zurück zum Zitat U. S. Fjordholm, R. Kappeli, S. Mishra, and E. Tadmor, “Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws,” Found. Comput. Math. 17, 763–827 (2017).MathSciNetCrossRef U. S. Fjordholm, R. Kappeli, S. Mishra, and E. Tadmor, “Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws,” Found. Comput. Math. 17, 763–827 (2017).MathSciNetCrossRef
17.
Zurück zum Zitat A. R. Winters and G. J. Gassner, “A comparison of two entropy stable discontinuous galerkin spectral element approximations for the shallow water equations with non-constant topography,” J. Comput. Phys. 301, 357–376 (2015).MathSciNetCrossRef A. R. Winters and G. J. Gassner, “A comparison of two entropy stable discontinuous galerkin spectral element approximations for the shallow water equations with non-constant topography,” J. Comput. Phys. 301, 357–376 (2015).MathSciNetCrossRef
18.
Zurück zum Zitat G. J. Gassner, A. R. Winters, and D. A. Kopriva, “A well balanced and entropy conservative discontinuous galerkin spectral element method for the shallow water equations,” Appl. Math. Comput. 272, 291–308 (2016).MathSciNetMATH G. J. Gassner, A. R. Winters, and D. A. Kopriva, “A well balanced and entropy conservative discontinuous galerkin spectral element method for the shallow water equations,” Appl. Math. Comput. 272, 291–308 (2016).MathSciNetMATH
19.
Zurück zum Zitat T. Chen and Ch.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws,” J. Comput. Phys. 345, 427–461 (2017).MathSciNetCrossRef T. Chen and Ch.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws,” J. Comput. Phys. 345, 427–461 (2017).MathSciNetCrossRef
20.
Zurück zum Zitat I. B. Petrov and A. S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type,” USSR Comput. Math. Math. Phys. 24, 128–138 (1984).MathSciNetCrossRef I. B. Petrov and A. S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type,” USSR Comput. Math. Math. Phys. 24, 128–138 (1984).MathSciNetCrossRef
21.
Zurück zum Zitat Y. A. Kriksin and V. F. Tishkin, “Entropic regularization of discontinuous Galerkin method in one-dimensional problems of gas dynamics,” KIAM Preprint No. 100 (Keldysh Inst. Appl. Math., Moscow, 2018). Y. A. Kriksin and V. F. Tishkin, “Entropic regularization of discontinuous Galerkin method in one-dimensional problems of gas dynamics,” KIAM Preprint No. 100 (Keldysh Inst. Appl. Math., Moscow, 2018).
Metadaten
Titel
Variational Entropic Regularization of the Discontinuous Galerkin Method for Gasdynamic Equations
Publikationsdatum
01.11.2019
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 6/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219060103

Weitere Artikel der Ausgabe 6/2019

Mathematical Models and Computer Simulations 6/2019 Zur Ausgabe

Premium Partner