Skip to main content
Erschienen in: Wireless Personal Communications 2/2017

17.11.2016

Threshold Power Based UE Admittance and Contention Free Resource Allocation for Interference Mitigation in Cognitive Femtocells

verfasst von: Ghazanfar A. Safdar, Faisal Tariq, Harold O. Kpojime

Erschienen in: Wireless Personal Communications | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Femtocells are aimed at providing strong coverage in the indoor area where typical macrocell coverage is very poor. It has hugely attracted network operators and stakeholders mainly due to its simple plug and play operation and low cost. Femtocells operate on a much lower power compared to macrocell and thus provide a number of benefits including energy efficiency and frequent spatial reuse of the spectrum. Femtocells are overlaid on macrocells and designed to co-exist with them sharing the same spectrum pool. However, since they are deployed by the end user, no pre-deployment resource planning is possible. So, interference among the femtocells as well as between femtocells and macrocells remain a major bottleneck for successful operation of femtocell networks. This paper proposes a novel threshold power based admittance and contention free resource allocation for interference mitigation in cognitive femtocell networks. In our proposed scheme, a Femtocell Access Point with Cognitive radio capability known as Cognitive Femtocells (CF), sets a threshold value on the mutual interference between itself and a close by macrocell user equipment (MUE). To mitigate cross-tier interference, a CF classifies MUEs with higher than threshold interference value as Undesirable MUEs (UMUEs) and subsequently admits it as one of its user equipment. MUEs with lower than threshold interference values are classified as Desirable MUEs (DMUEs). To mitigate co-tier interference, proposed scheme introduces a scheduling engine which employs matching policy attributes and assigns resource blocks (RBs) of unique DMUEs to CFs to avoid any possible contention problems, thus providing improved co-tier interference. System level simulations have been performed to demonstrate effectiveness of scheme and significant performance improvement in terms of SINR, throughput and spectrum efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.CrossRef Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.CrossRef
2.
Zurück zum Zitat Li, Y. Y., & Sousa, E. S. (2012). “Cognitive femtocell: A cost-effective approach towards 4G autonomous infrastructure networks. Wireless Personal Communications, 64(1), 65–78.CrossRef Li, Y. Y., & Sousa, E. S. (2012). “Cognitive femtocell: A cost-effective approach towards 4G autonomous infrastructure networks. Wireless Personal Communications, 64(1), 65–78.CrossRef
3.
Zurück zum Zitat Zhang, Q., Feng, Z., & Li, W. (2015). Coverage self-optimization for randomly deployed femtocell networks. Wireless Personal Communications, 82(4), 2481–2504.CrossRef Zhang, Q., Feng, Z., & Li, W. (2015). Coverage self-optimization for randomly deployed femtocell networks. Wireless Personal Communications, 82(4), 2481–2504.CrossRef
4.
Zurück zum Zitat Khan, F. H., & Young-June, C. (2014). Adaptive mode configuration in two-tier macro-femtocell networks. IET Communications, 8(7), 1169–1179.CrossRef Khan, F. H., & Young-June, C. (2014). Adaptive mode configuration in two-tier macro-femtocell networks. IET Communications, 8(7), 1169–1179.CrossRef
5.
Zurück zum Zitat Kim, S. (2013). Multi-objective power control algorithm for femtocell networks. Wireless Personal Communications, 75(4), 2281–2288.CrossRef Kim, S. (2013). Multi-objective power control algorithm for femtocell networks. Wireless Personal Communications, 75(4), 2281–2288.CrossRef
6.
Zurück zum Zitat Kpojime, H. O., & Safdar, G. A. (2014). Efficacy of coverage radius-based power control scheme for interference mitigation in femtocells. IET Electronics Letters, 50(8), 639–641.CrossRef Kpojime, H. O., & Safdar, G. A. (2014). Efficacy of coverage radius-based power control scheme for interference mitigation in femtocells. IET Electronics Letters, 50(8), 639–641.CrossRef
7.
Zurück zum Zitat Razavi, R., Ho, L., Claussen, H., & Lopez-Perez, D. (2015). Improving small-cell performance through switched multielement antenna systems in heterogeneous networks. IEEE Transaction on Vehicular Technology, 64(7), 3140–3151. Razavi, R., Ho, L., Claussen, H., & Lopez-Perez, D. (2015). Improving small-cell performance through switched multielement antenna systems in heterogeneous networks. IEEE Transaction on Vehicular Technology, 64(7), 3140–3151.
8.
Zurück zum Zitat Park, S., Seo, W., Kim, Y., Lim, S., & Hong, D. (2010). Beam subset selection strategy for interference reduction in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 9(11), 3440–3449.CrossRef Park, S., Seo, W., Kim, Y., Lim, S., & Hong, D. (2010). Beam subset selection strategy for interference reduction in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 9(11), 3440–3449.CrossRef
9.
Zurück zum Zitat Torregoza, J. P. M., Enkhbat, R., & Hwang, W. J. (2010). Joint power control, base station assignment, and channel assignment in cognitive femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2010, 285714.CrossRef Torregoza, J. P. M., Enkhbat, R., & Hwang, W. J. (2010). Joint power control, base station assignment, and channel assignment in cognitive femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2010, 285714.CrossRef
10.
Zurück zum Zitat Cheng, S. M., Lien, S. Y., Chu, F. S., & Chen, K. C. (2011). On exploiting cognitive radio to mitigate interference in macro/femto heterogeneous networks. IEEE Wireless Communications, 18(3), 40–47.CrossRef Cheng, S. M., Lien, S. Y., Chu, F. S., & Chen, K. C. (2011). On exploiting cognitive radio to mitigate interference in macro/femto heterogeneous networks. IEEE Wireless Communications, 18(3), 40–47.CrossRef
11.
Zurück zum Zitat Kpojime, H. O., & Safdar, G. A. (2015). Interference mitigation in cognitive-radio-based femtocells. IEEE Communications Surveys & Tutorials, 17(3), 1511–1534.CrossRef Kpojime, H. O., & Safdar, G. A. (2015). Interference mitigation in cognitive-radio-based femtocells. IEEE Communications Surveys & Tutorials, 17(3), 1511–1534.CrossRef
12.
Zurück zum Zitat Sahin, M. E., Guvenc, I., Jeong, M., & Arslan, H. (2009). Handling CCI and ICI in OFDMA femtocell networks through frequency scheduling. IEEE Transactions on Consumer Electronics, 55(4), 1936–1944.CrossRef Sahin, M. E., Guvenc, I., Jeong, M., & Arslan, H. (2009). Handling CCI and ICI in OFDMA femtocell networks through frequency scheduling. IEEE Transactions on Consumer Electronics, 55(4), 1936–1944.CrossRef
13.
Zurück zum Zitat Wang, W., Yu, G., & Huang, A. (2013). Cognitive radio enhanced interference coordination for femtocell networks. IEEE Communications Magazine, 51(6), 37–43.CrossRef Wang, W., Yu, G., & Huang, A. (2013). Cognitive radio enhanced interference coordination for femtocell networks. IEEE Communications Magazine, 51(6), 37–43.CrossRef
14.
Zurück zum Zitat Chang, C.-W. (2012). An interference-avoidance code assignment strategy for the hierarchical two-dimensional-spread MC-DS-CDMA system: A prototype of cognitive radio femtocell system. IEEE Transactions on Vehicular Technology, 61(1), 166–184.CrossRef Chang, C.-W. (2012). An interference-avoidance code assignment strategy for the hierarchical two-dimensional-spread MC-DS-CDMA system: A prototype of cognitive radio femtocell system. IEEE Transactions on Vehicular Technology, 61(1), 166–184.CrossRef
15.
Zurück zum Zitat Li, L., Xu, C., & Tao, M. (2012). Resource allocation in open access OFDMA femtocell networks. IEEE Wireless Communications Letters, 1(6), 625–628.CrossRef Li, L., Xu, C., & Tao, M. (2012). Resource allocation in open access OFDMA femtocell networks. IEEE Wireless Communications Letters, 1(6), 625–628.CrossRef
16.
Zurück zum Zitat Huang, L., Zhu, G., & Du, X. (2013). Cognitive femtocell networks: an opportunistic spectrum access for future indoor wireless coverage. Wireless Communications IEEE, 20(2), 44–51.CrossRef Huang, L., Zhu, G., & Du, X. (2013). Cognitive femtocell networks: an opportunistic spectrum access for future indoor wireless coverage. Wireless Communications IEEE, 20(2), 44–51.CrossRef
17.
Zurück zum Zitat Zhang, J., & De la Roche, G. (2010). Femtocells: technologies and deployment. New York: Wiley.CrossRef Zhang, J., & De la Roche, G. (2010). Femtocells: technologies and deployment. New York: Wiley.CrossRef
18.
Zurück zum Zitat 3GPP, “Simulation assumptions and parameters for FDD HeNB RF requirements,” R4-092042, TSG-RAN WG4, Meeting 51, 2009. 3GPP, “Simulation assumptions and parameters for FDD HeNB RF requirements,” R4-092042, TSG-RAN WG4, Meeting 51, 2009.
19.
Zurück zum Zitat Gur, G., Bayhan, S., & Alagoz, F. (2010). Cognitive femtocell networks: an overlay architecture for localized dynamic spectrum access [dynamic spectrum management]. IEEE Wireless Communications, 17(4), 62–70.CrossRef Gur, G., Bayhan, S., & Alagoz, F. (2010). Cognitive femtocell networks: an overlay architecture for localized dynamic spectrum access [dynamic spectrum management]. IEEE Wireless Communications, 17(4), 62–70.CrossRef
Metadaten
Titel
Threshold Power Based UE Admittance and Contention Free Resource Allocation for Interference Mitigation in Cognitive Femtocells
verfasst von
Ghazanfar A. Safdar
Faisal Tariq
Harold O. Kpojime
Publikationsdatum
17.11.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3870-z

Weitere Artikel der Ausgabe 2/2017

Wireless Personal Communications 2/2017 Zur Ausgabe

Neuer Inhalt