Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2013

01.05.2013

THz Absorption Spectra of Fe and Mg Water Complexes Calculated by Density Functional Theory

verfasst von: L. Huang, S. G. Lambrakos, A. Shabaev, L. Massa, C. Yapijakis

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Monitoring of water contaminants implies a need for determining their dielectric response properties with respect to electromagnetic wave excitation at various frequencies. Iron is a naturally occurring water contaminant, which is the result of decaying vegetation and is at much higher concentrations than any other metal contaminant. The present study uses density functional theory (DFT) for the calculation of ground state resonance structure and stability analysis of Fe water complexes. The calculations presented are for excitation by electromagnetic waves at frequencies within the THz range. Dielectric response functions calculated by DFT can be used for the analysis of water contaminants. These functions provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. In addition, with respect to qualitative analysis, DFT calculated absorption spectra provide for molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground state resonance structure presented here.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.A. Bryant and C. Yapijakis, Ozonation-Diatomite Filtration Removes Color and Turbidity, Water Sewage, 1977, 124 (Nos. 9, 10), p 23–28, 34–38 E.A. Bryant and C. Yapijakis, Ozonation-Diatomite Filtration Removes Color and Turbidity, Water Sewage, 1977, 124 (Nos. 9, 10), p 23–28, 34–38
2.
Zurück zum Zitat C. Yapijakis, Unique Pre-Ozonation-D.E. Filtration Water Treatment Plant Design is Based on Pilot Plant Data, Scale-Up of Water and Wastewater Processes, N.W. Schmidke and D.W. Smith, Ed., Ann Arbor Science Publishers, 1983, p 179–197 C. Yapijakis, Unique Pre-Ozonation-D.E. Filtration Water Treatment Plant Design is Based on Pilot Plant Data, Scale-Up of Water and Wastewater Processes, N.W. Schmidke and D.W. Smith, Ed., Ann Arbor Science Publishers, 1983, p 179–197
3.
Zurück zum Zitat B.M. Rice and C.F. Chabalowski, Ab Initio and Nonlocal Density Functional Study of 1,3,5-Trinitro-s-triazine (RDX) Conformers, J. Phys. Chem., 1997, 101, p 8720CrossRef B.M. Rice and C.F. Chabalowski, Ab Initio and Nonlocal Density Functional Study of 1,3,5-Trinitro-s-triazine (RDX) Conformers, J. Phys. Chem., 1997, 101, p 8720CrossRef
4.
Zurück zum Zitat Y. Chen, H. Liu, Y. Deng, D. Schauki, M.J. Fitch, R. Osiander, C. Dodson, J.B. Spicer, M. Shur, and X.-C. Zhang, THz Spectroscopic Investigation of 2,4-Dinitrotoluene, Chem. Phys. Lett., 2004, 400, p 357–361CrossRef Y. Chen, H. Liu, Y. Deng, D. Schauki, M.J. Fitch, R. Osiander, C. Dodson, J.B. Spicer, M. Shur, and X.-C. Zhang, THz Spectroscopic Investigation of 2,4-Dinitrotoluene, Chem. Phys. Lett., 2004, 400, p 357–361CrossRef
5.
Zurück zum Zitat D.G. Allis, D.A. Prokhorova, and T.M. Korter, Solid-State Modeling of the Terahertz Spectrum of the High Explosive HMX, J. Phys. Chem. A, 2006, 110, p 1951–1959CrossRef D.G. Allis, D.A. Prokhorova, and T.M. Korter, Solid-State Modeling of the Terahertz Spectrum of the High Explosive HMX, J. Phys. Chem. A, 2006, 110, p 1951–1959CrossRef
6.
Zurück zum Zitat D.G. Allis and T.M. Korter, Theoretical Analysis of the Terahertz Spectrum of the High Explosive PETN, Chem. Phys. Chem., 2006, 7, p 2398CrossRef D.G. Allis and T.M. Korter, Theoretical Analysis of the Terahertz Spectrum of the High Explosive PETN, Chem. Phys. Chem., 2006, 7, p 2398CrossRef
7.
Zurück zum Zitat J. Chen, Y. Chen, H. Zhao, G.J. Bastiaans, and X.-C. Zhang, Absorption Coefficients of Selected Explosives and Related Compounds in the Range of 0.1-2.8 THz, Opt. Exp., 2007, 15, p 11763CrossRef J. Chen, Y. Chen, H. Zhao, G.J. Bastiaans, and X.-C. Zhang, Absorption Coefficients of Selected Explosives and Related Compounds in the Range of 0.1-2.8 THz, Opt. Exp., 2007, 15, p 11763CrossRef
8.
Zurück zum Zitat M.R. Leahy-Hoppa, M.J. Fitch, X. Zheng, L.M. Hayden, and R. Osiander, Wideband Terahertz Spectroscopy of Explosives, Chem. Phys. Lett., 2007, 434, p 227–230CrossRef M.R. Leahy-Hoppa, M.J. Fitch, X. Zheng, L.M. Hayden, and R. Osiander, Wideband Terahertz Spectroscopy of Explosives, Chem. Phys. Lett., 2007, 434, p 227–230CrossRef
9.
Zurück zum Zitat J. Hooper, E. Mitchell, C. Konek, and J. Wilkinson, Terahertz Spectroscopy Techniques for Explosives Detection, Chem. Phys. Lett., 2009, 467, p 309CrossRef J. Hooper, E. Mitchell, C. Konek, and J. Wilkinson, Terahertz Spectroscopy Techniques for Explosives Detection, Chem. Phys. Lett., 2009, 467, p 309CrossRef
10.
Zurück zum Zitat M.R. Leahy-Hoppa, M.J. Fitch, and R. Osiander, Terahertz Spectroscopy Techniques for Explosives Detection, Anal. Bioanal. Chem., 2009, 395, p 247CrossRef M.R. Leahy-Hoppa, M.J. Fitch, and R. Osiander, Terahertz Spectroscopy Techniques for Explosives Detection, Anal. Bioanal. Chem., 2009, 395, p 247CrossRef
11.
Zurück zum Zitat A. Shabaev, S.G. Lambrakos, N. Bernstein, V.L. Jacobs, and D. Finkenstadt, A General Framework for Numerical Simulation of Improvised Explosive Device (IED)-Detection Scenarios Using Density Functional Theory (DFT) and Terahertz (THz) Spectra, Appl. Spectrosc., 2011, 65, p 409CrossRef A. Shabaev, S.G. Lambrakos, N. Bernstein, V.L. Jacobs, and D. Finkenstadt, A General Framework for Numerical Simulation of Improvised Explosive Device (IED)-Detection Scenarios Using Density Functional Theory (DFT) and Terahertz (THz) Spectra, Appl. Spectrosc., 2011, 65, p 409CrossRef
12.
Zurück zum Zitat A. Shabaev, S.G. Lambrakos, N. Bernstein, V. Jacobs, and D. Finkenstadt, THz Dielectric Properties of High Explosives Calculated by Density Functional Theory for the Design of Detectors, J. Mater. Eng. Perform., 2011, 20(9), p 1536. doi:10.1007/s11665-011-9857-8 CrossRef A. Shabaev, S.G. Lambrakos, N. Bernstein, V. Jacobs, and D. Finkenstadt, THz Dielectric Properties of High Explosives Calculated by Density Functional Theory for the Design of Detectors, J. Mater. Eng. Perform., 2011, 20(9), p 1536. doi:10.​1007/​s11665-011-9857-8 CrossRef
13.
Zurück zum Zitat L. Huang, A. Shabaev, S.G. Lambrakos, N. Bernstein, V. Jacobs, D. Finkenstadt, and L. Massa, Dielectric Response of High Explosives at THz Frequencies Calculated Using Density Functional Theory, J. Mater. Eng. Perform., 2011, doi:10.1007/s11665-011-0020-3 L. Huang, A. Shabaev, S.G. Lambrakos, N. Bernstein, V. Jacobs, D. Finkenstadt, and L. Massa, Dielectric Response of High Explosives at THz Frequencies Calculated Using Density Functional Theory, J. Mater. Eng. Perform., 2011, doi:10.​1007/​s11665-011-0020-3
14.
Zurück zum Zitat M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009
16.
Zurück zum Zitat P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, p B864CrossRef P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, p B864CrossRef
17.
Zurück zum Zitat W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p A1133CrossRef W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p A1133CrossRef
18.
Zurück zum Zitat R.O. Jones and O. Gunnarson, The Density Functional Formalism, Its Applications and Prospects, Rev. Mod. Phys., 1989, 61, p 689CrossRef R.O. Jones and O. Gunnarson, The Density Functional Formalism, Its Applications and Prospects, Rev. Mod. Phys., 1989, 61, p 689CrossRef
19.
Zurück zum Zitat W.W. Hager and H. Zhang, A Survey of Nonlinear Conjugate Gradient Methods, Pacific J. Optim., 2006, 2, p 35–58 W.W. Hager and H. Zhang, A Survey of Nonlinear Conjugate Gradient Methods, Pacific J. Optim., 2006, 2, p 35–58
20.
Zurück zum Zitat R.M. Martin, Electronic Structures Basic Theory and Practical Methods, Cambridge University Press, Cambridge, 2004, p 25CrossRef R.M. Martin, Electronic Structures Basic Theory and Practical Methods, Cambridge University Press, Cambridge, 2004, p 25CrossRef
21.
Zurück zum Zitat E.B. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955 E.B. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955
22.
Zurück zum Zitat J.W. Ochterski, “Vibrational Analysis in Gaussian,” help@gaussian.com, 1999. J.W. Ochterski, “Vibrational Analysis in Gaussian,” help@gaussian.com, 1999.
23.
Zurück zum Zitat C. A. D. Roeser and E. Mazur, Light-Matter Interactions on Femtosecond Time Scale, Frontiers of Optical Spectroscopy, B. Di Bartolo and O. Forte, Ed., NATO Science Series, Vol 168, Kluwer Academic Publishers, Dordrecht-Norwell, 2005, p 29 C. A. D. Roeser and E. Mazur, Light-Matter Interactions on Femtosecond Time Scale, Frontiers of Optical Spectroscopy, B. Di Bartolo and O. Forte, Ed., NATO Science Series, Vol 168, Kluwer Academic Publishers, Dordrecht-Norwell, 2005, p 29
24.
Zurück zum Zitat C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH Verlag, Weinheim, 2004 C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH Verlag, Weinheim, 2004
25.
Zurück zum Zitat A.D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 1993, 98, p 5648–5652CrossRef A.D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 1993, 98, p 5648–5652CrossRef
26.
Zurück zum Zitat B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett., 1989, 157, p 200–206CrossRef B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett., 1989, 157, p 200–206CrossRef
27.
Zurück zum Zitat A.D. McLean and G.S. Chandler, Contracted Gaussian-Basis Sets for Molecular Calculations. 1. 2nd Row Atoms, Z = 11-18, J. Chem. Phys., 1980, 72, p 5639–5648CrossRef A.D. McLean and G.S. Chandler, Contracted Gaussian-Basis Sets for Molecular Calculations. 1. 2nd Row Atoms, Z = 11-18, J. Chem. Phys., 1980, 72, p 5639–5648CrossRef
28.
Zurück zum Zitat T. Clark, J. Chandrasekhar, G.W. Spitznagel, and P.V.R. Schleyer, Efficient Diffuse Function-Augmented Basis-Sets for Anion Calculations. 3. The 3-21+G Basis Set for 1st-Row elements, Li-F, J. Comp. Chem., 1983, 4, p 294–301CrossRef T. Clark, J. Chandrasekhar, G.W. Spitznagel, and P.V.R. Schleyer, Efficient Diffuse Function-Augmented Basis-Sets for Anion Calculations. 3. The 3-21+G Basis Set for 1st-Row elements, Li-F, J. Comp. Chem., 1983, 4, p 294–301CrossRef
29.
Zurück zum Zitat M.J. Frisch, J.A. Pople, and J.S. Binkley, Self-Consistent Molecular Orbital Methods. 25. Supplementary Functions for Gaussian Basis Sets, J. Chem. Phys., 1984, 80, p 3265–3269CrossRef M.J. Frisch, J.A. Pople, and J.S. Binkley, Self-Consistent Molecular Orbital Methods. 25. Supplementary Functions for Gaussian Basis Sets, J. Chem. Phys., 1984, 80, p 3265–3269CrossRef
30.
Zurück zum Zitat A. Fouqueau, S. Mer, and M.E. Casida, Comparison of Density Functional for Energy and Structural Differences Between the High-[5T2g: (t2g)4(eg)2] and Low-[1A1g: (t2g)6(eg)0] Spin States of the Hexaquoferrous Cation [Fe(H2O)6]+2, J. Chem. Phys., 2004, 120(20), p 9473–9486CrossRef A. Fouqueau, S. Mer, and M.E. Casida, Comparison of Density Functional for Energy and Structural Differences Between the High-[5T2g: (t2g)4(eg)2] and Low-[1A1g: (t2g)6(eg)0] Spin States of the Hexaquoferrous Cation [Fe(H2O)6]+2, J. Chem. Phys., 2004, 120(20), p 9473–9486CrossRef
31.
Zurück zum Zitat C.S. Babu, M. Madhusoodanan, G. Sridhar, and B.L. Tembe, Orientations of [Fe(H2O)6]+2 and [Fe(H2O)6]+3 Complexes at a Reactive Separation in Water, J. Am. Chem. Soc., 1997, 119, p 5679–5681CrossRef C.S. Babu, M. Madhusoodanan, G. Sridhar, and B.L. Tembe, Orientations of [Fe(H2O)6]+2 and [Fe(H2O)6]+3 Complexes at a Reactive Separation in Water, J. Am. Chem. Soc., 1997, 119, p 5679–5681CrossRef
32.
Zurück zum Zitat M. Adrian-Scotto, D. Vasileva, G. Mallet, and D. Vasilescu, About the Hydration of Mg++: A Quantum DFT Study, Internet Electron. J. Mol. Des., 2004, 3, p 400–411 M. Adrian-Scotto, D. Vasileva, G. Mallet, and D. Vasilescu, About the Hydration of Mg++: A Quantum DFT Study, Internet Electron. J. Mol. Des., 2004, 3, p 400–411
33.
Zurück zum Zitat M. Anekata, F. Misaizu, K. Fuke, S. Iwata, and K. Hashimoto, Reactions of Singly Charged Alkaline-Earth Metal Ions with Water Clusters: Characteristic Size Distribution of Product Ions, J. Am. Chem. Soc., 1995, 117, p 747–754CrossRef M. Anekata, F. Misaizu, K. Fuke, S. Iwata, and K. Hashimoto, Reactions of Singly Charged Alkaline-Earth Metal Ions with Water Clusters: Characteristic Size Distribution of Product Ions, J. Am. Chem. Soc., 1995, 117, p 747–754CrossRef
34.
Zurück zum Zitat T. Dudev, J.A. Cowan, and C. Lim, Cometitive Binding in Magnesium Coodination Chemistry: Water versus Ligands of Biological Interest, J. Am. Chem. Soc., 1999, 121, p 7665–7673CrossRef T. Dudev, J.A. Cowan, and C. Lim, Cometitive Binding in Magnesium Coodination Chemistry: Water versus Ligands of Biological Interest, J. Am. Chem. Soc., 1999, 121, p 7665–7673CrossRef
35.
Zurück zum Zitat K. Fuke, F. Misaizu, M. Sanekata, K. Tsukamoto, and S. Iwata, Electronic Structure and Reactivity of Mg+(H2O)n Cluster Ions, Z. Phys. D, 1993, 26, p S180–S182 K. Fuke, F. Misaizu, M. Sanekata, K. Tsukamoto, and S. Iwata, Electronic Structure and Reactivity of Mg+(H2O)n Cluster Ions, Z. Phys. D, 1993, 26, p S180–S182
36.
Zurück zum Zitat M. Pavlov, P.E.M. Siegbahn, and M. Sandström, Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory, J. Phys. Chem. A, 1998, 102, p 219–228CrossRef M. Pavlov, P.E.M. Siegbahn, and M. Sandström, Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory, J. Phys. Chem. A, 1998, 102, p 219–228CrossRef
37.
Zurück zum Zitat M. Adrian-Scotto, G. Mallet, and D. Vasilescu, Hydration of Mg++: A Quantum DFT and Ab Initio HF Study, J. Mol. Str: THEOCHEM, 2005, 728, p 231–242CrossRef M. Adrian-Scotto, G. Mallet, and D. Vasilescu, Hydration of Mg++: A Quantum DFT and Ab Initio HF Study, J. Mol. Str: THEOCHEM, 2005, 728, p 231–242CrossRef
38.
Zurück zum Zitat B.M. Reinhard and G. Niedner-Schatteburg, Ab Initio Treatment of Magnesium Water Cluster Anions [Mg, nH2O]−, n ≤ 11, Phys. Chem. Chem. Phys., 2003, 5, p 1970–1980CrossRef B.M. Reinhard and G. Niedner-Schatteburg, Ab Initio Treatment of Magnesium Water Cluster Anions [Mg, nH2O], n ≤ 11, Phys. Chem. Chem. Phys., 2003, 5, p 1970–1980CrossRef
39.
Zurück zum Zitat B.M. Reinhard, A. Lagutschenkov, and G. Niedner-Schatteburg, Ab Initio Study of [Mg, nH2O]− Reactive Decay Products: Structure and Stability of Magnesium Oxide and Magnesium Hydroxide Water Cluster Anions [MgO,(n−1)H2O]−, [HMgOH,(n−1)H2O]− and [Mg(OH)2,(n−2)H2O]−, Phys. Chem. Chem. Phys., 2004, 6, p 4268–4275CrossRef B.M. Reinhard, A. Lagutschenkov, and G. Niedner-Schatteburg, Ab Initio Study of [Mg, nH2O] Reactive Decay Products: Structure and Stability of Magnesium Oxide and Magnesium Hydroxide Water Cluster Anions [MgO,(n−1)H2O], [HMgOH,(n−1)H2O] and [Mg(OH)2,(n−2)H2O], Phys. Chem. Chem. Phys., 2004, 6, p 4268–4275CrossRef
40.
Zurück zum Zitat H. Watanabe, S. Iwata, K. Hashimoto, F. Misaizu, and K. Fuke, Molecular Orbital Studies of the Structures and Reactions of Singly Charged Magnesium Ion with Water Clusters, Mg+(H2O)n, J. Am. Chem. Soc., 1995, 117, p 755–763CrossRef H. Watanabe, S. Iwata, K. Hashimoto, F. Misaizu, and K. Fuke, Molecular Orbital Studies of the Structures and Reactions of Singly Charged Magnesium Ion with Water Clusters, Mg+(H2O)n, J. Am. Chem. Soc., 1995, 117, p 755–763CrossRef
41.
Zurück zum Zitat H. Watanabe and S. Iwata, Theoretical Assignments of the Photo-dissociation Excitation Spectra of Mg+ Ion Complexes with Water Clusters: Multi-reference CI Studies, J. Chem. Phys., 1998, 108, p 10078–10083CrossRef H. Watanabe and S. Iwata, Theoretical Assignments of the Photo-dissociation Excitation Spectra of Mg+ Ion Complexes with Water Clusters: Multi-reference CI Studies, J. Chem. Phys., 1998, 108, p 10078–10083CrossRef
Metadaten
Titel
THz Absorption Spectra of Fe and Mg Water Complexes Calculated by Density Functional Theory
verfasst von
L. Huang
S. G. Lambrakos
A. Shabaev
L. Massa
C. Yapijakis
Publikationsdatum
01.05.2013
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2013
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0431-9

Weitere Artikel der Ausgabe 5/2013

Journal of Materials Engineering and Performance 5/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.