Skip to main content

2021 | OriginalPaper | Buchkapitel

8. Timber Structures

verfasst von : Daniel Brandon, Danny Hopkin, Richard Emberley, Colleen Wade

Erschienen in: International Handbook of Structural Fire Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter examines structural fire engineering considerations that are specific to timber, which is a relatively emerging construction material for large engineered buildings. First, thermal and mechanical properties of timber at elevated temperatures are discussed. Second, failure modes specific to timber structures (e.g., adhesive debonding) are examined. Lastly, pertinent analysis techniques for structural fire engineering applications involving timber structures are presented. The renaissance of timber as a construction material, allied to its application in less common building forms, has led researchers to map many challenges that should be considered and addressed when seeking to demonstrate that an adequate level of structural fire safety has been achieved when adopting timber. In parallel, new research studies have emerged which fundamentally seek to understand the timber pyrolysis process and its translation to the enclosure fire context. These challenges and the recent prevalence of timber-associated fire research shape the content of this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bartlett, A., Hadden, R., Bisby, L. and Lane, B. (2016). “Auto-extinction of engineered timber in relation to fire point theory,” in Proceedings of the 2016 Interflam Conference, Royal Holloway, 2016. Bartlett, A., Hadden, R., Bisby, L. and Lane, B. (2016). “Auto-extinction of engineered timber in relation to fire point theory,” in Proceedings of the 2016 Interflam Conference, Royal Holloway, 2016.
2.
Zurück zum Zitat Bartlett, A., Wiesner, F., Hadden, R., Bisby, L., Lane, B., Lawrence, A., Palma, P. & Frangi, A. (2016), Needs for total fire engineering of mass timber buildings. In 2016 World Conference on Timber Engineering (WCTE 2016). Vienna. Bartlett, A., Wiesner, F., Hadden, R., Bisby, L., Lane, B., Lawrence, A., Palma, P. & Frangi, A. (2016), Needs for total fire engineering of mass timber buildings. In 2016 World Conference on Timber Engineering (WCTE 2016). Vienna.
3.
Zurück zum Zitat Hopkin, D., et al. (2016). Timber structures subject to non-standard fire exposure—advances & challenges. Proceedings of the World Conference on Timber Engineering 2016 (WCTE 2016), TU Wien, Aug 22–25. Hopkin, D., et al. (2016). Timber structures subject to non-standard fire exposure—advances & challenges. Proceedings of the World Conference on Timber Engineering 2016 (WCTE 2016), TU Wien, Aug 22–25.
5.
Zurück zum Zitat Hadden, R. M., Bartlett, A. I., Hidalgo, J. P., Santamaria, S., Wiesner, F., Bisby, L. A., Deeny, S., & Lane, B. (2017). Effects of exposed cross laminated timber on compartment fire dynamics. Fire Safety Journal, 91, 480–489.CrossRef Hadden, R. M., Bartlett, A. I., Hidalgo, J. P., Santamaria, S., Wiesner, F., Bisby, L. A., Deeny, S., & Lane, B. (2017). Effects of exposed cross laminated timber on compartment fire dynamics. Fire Safety Journal, 91, 480–489.CrossRef
6.
Zurück zum Zitat Green, D. W., Winandy, J. E., & Kretschmann, D. E. (1999). ‘Chapter 4 – Mechanical properties of wood’ wood handbook—Wood as an engineering material. Gen. Tech. Rep. FPL–GTR–113 (p. 45). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. Green, D. W., Winandy, J. E., & Kretschmann, D. E. (1999). ‘Chapter 4 – Mechanical properties of wood’ wood handbook—Wood as an engineering material. Gen. Tech. Rep. FPL–GTR–113 (p. 45). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
7.
Zurück zum Zitat Peng, L. (2010). Performance of heavy timber connections in fire. Thesis. Department of Civil and Environmental Engineering Carleton University. Peng, L. (2010). Performance of heavy timber connections in fire. Thesis. Department of Civil and Environmental Engineering Carleton University.
8.
Zurück zum Zitat American Institute of Timber Construction. (2012). Timber construction manual. J Wiley & Sons.CrossRef American Institute of Timber Construction. (2012). Timber construction manual. J Wiley & Sons.CrossRef
9.
Zurück zum Zitat Torero, J. (2016). Flaming ignition of solid fuels. In M. J. Hurley et al. (Eds.), SFPE handbook of fire protection engineering. Springer. Torero, J. (2016). Flaming ignition of solid fuels. In M. J. Hurley et al. (Eds.), SFPE handbook of fire protection engineering. Springer.
10.
Zurück zum Zitat Browne, F.L. (1958). Theories of the combustion of wood and its control. A survey of the literature. Report 2136. Madison, Wisconsin: Forest Products Laboratory, US Department of Agriculture. Browne, F.L. (1958). Theories of the combustion of wood and its control. A survey of the literature. Report 2136. Madison, Wisconsin: Forest Products Laboratory, US Department of Agriculture.
12.
Zurück zum Zitat Drysdale, D. (2011). An introduction to fire dynamics (3rd ed.). Wiley.CrossRef Drysdale, D. (2011). An introduction to fire dynamics (3rd ed.). Wiley.CrossRef
13.
Zurück zum Zitat Babrauskas, V. (2002). Ignition of wood: A review of the state of the art. Journal of Fire Protection Engineering, 12(3), 163–189.CrossRef Babrauskas, V. (2002). Ignition of wood: A review of the state of the art. Journal of Fire Protection Engineering, 12(3), 163–189.CrossRef
14.
Zurück zum Zitat Hopkin, D., Gorska, C., Spearpoint, M. J., Fu, I., Krenn, H., Sleik, T., & Stapf, G. (2021). Experimental characterisation of the fire behaviour of CLT ceiling elements from different leading suppliers, in: Applications of Structural Fire Engineering. Presented at the Applications of Structural Fire Engineering, Ljubljana, Slovenia. Hopkin, D., Gorska, C., Spearpoint, M. J., Fu, I., Krenn, H., Sleik, T., & Stapf, G. (2021). Experimental characterisation of the fire behaviour of CLT ceiling elements from different leading suppliers, in: Applications of Structural Fire Engineering. Presented at the Applications of Structural Fire Engineering, Ljubljana, Slovenia.
15.
Zurück zum Zitat Mikkola, E. (1990). Charring of wood. VTT research report 689. Technical Research Centre of Finland. Mikkola, E. (1990). Charring of wood. VTT research report 689. Technical Research Centre of Finland.
17.
Zurück zum Zitat Tran, H. C., & White, R. H. (1992). Burning rate of solid wood measured in a heat release rate calorimeter. Fire and Materials, 16(4), 197–206.CrossRef Tran, H. C., & White, R. H. (1992). Burning rate of solid wood measured in a heat release rate calorimeter. Fire and Materials, 16(4), 197–206.CrossRef
18.
Zurück zum Zitat Petrella, R. V. (1979). The mass burning rate and mass transfer number of selected polymers, wood, and organic liquids. Polymer-Plastic Technology and Engineering, 13(1), 83–103.CrossRef Petrella, R. V. (1979). The mass burning rate and mass transfer number of selected polymers, wood, and organic liquids. Polymer-Plastic Technology and Engineering, 13(1), 83–103.CrossRef
19.
Zurück zum Zitat Tewarson, A., & Pion, R. F. (1976). Flammability of plastics–I. burning intensity. Combustion and Flame, 26, 85–103.CrossRef Tewarson, A., & Pion, R. F. (1976). Flammability of plastics–I. burning intensity. Combustion and Flame, 26, 85–103.CrossRef
21.
Zurück zum Zitat Ohlemiller, T., & Shaub, W. (1988). Products of wood smolder and their relation to wood-burning stoves (No. NBSIR-88-3767). National Bureau of Standards, Washington, DC (USA). Center for Fire Research. Ohlemiller, T., & Shaub, W. (1988). Products of wood smolder and their relation to wood-burning stoves (No. NBSIR-88-3767). National Bureau of Standards, Washington, DC (USA). Center for Fire Research.
22.
Zurück zum Zitat Ohlemiller, T. J. (2002). Smoldering combustion. SFPE handbook of fire protection engineering, 3. Ohlemiller, T. J. (2002). Smoldering combustion. SFPE handbook of fire protection engineering, 3.
23.
Zurück zum Zitat Beyler, C. L., Gratkowski, M. T., Sikorski, J. (2006). Radiant smoldering ignition of virgin plywood and plywood subjected to prolonged smoldering. International Symposium on Fire Investigation and Technology. Beyler, C. L., Gratkowski, M. T., Sikorski, J. (2006). Radiant smoldering ignition of virgin plywood and plywood subjected to prolonged smoldering. International Symposium on Fire Investigation and Technology.
24.
Zurück zum Zitat Swann, J. H., Hartman, J. R., Beyler, C. L. (2008). Study of radiant smoldering ignition of plywood subjected to prolonged heating using the cone calorimeter, TGA, and DSC. Proceedings of the 9th IAFSS Symposium, 9, 155–166. Swann, J. H., Hartman, J. R., Beyler, C. L. (2008). Study of radiant smoldering ignition of plywood subjected to prolonged heating using the cone calorimeter, TGA, and DSC. Proceedings of the 9th IAFSS Symposium, 9, 155–166.
26.
Zurück zum Zitat Buchanan, A. H. (2001). Structural design for fire safety (1st ed.). John Wiley and Sons Ltd. Buchanan, A. H. (2001). Structural design for fire safety (1st ed.). John Wiley and Sons Ltd.
27.
Zurück zum Zitat Hopkin, D. (2011). Fire performance of engineered timber products and systems. Thesis. Loughborough University, UK. Hopkin, D. (2011). Fire performance of engineered timber products and systems. Thesis. Loughborough University, UK.
29.
Zurück zum Zitat Kurokawa, T. (1990). Heavy timber construction. Habitat Intl., 14(2/3), 255–261.CrossRef Kurokawa, T. (1990). Heavy timber construction. Habitat Intl., 14(2/3), 255–261.CrossRef
30.
Zurück zum Zitat ICC. (2015). 2015 international building code. International Code Council. ICC. (2015). 2015 international building code. International Code Council.
31.
Zurück zum Zitat Dickson, M., & Parker, D. (2015). Engineered timber and structural form in sustainable design. Proceedings of the Institution of Civil Engineers - Construction Materials, 168(4), 161–172.CrossRef Dickson, M., & Parker, D. (2015). Engineered timber and structural form in sustainable design. Proceedings of the Institution of Civil Engineers - Construction Materials, 168(4), 161–172.CrossRef
32.
Zurück zum Zitat Lam, F. (2010). Timber products and manufacturing processes. ICE Manual of Construction Materials. Institution of Civil Engineers Lam, F. (2010). Timber products and manufacturing processes. ICE Manual of Construction Materials. Institution of Civil Engineers
33.
Zurück zum Zitat Thelandersson, S., & Larsen, H. (2003). Timber engineering. John Wiley & Sons. ISBN9780470844694. Thelandersson, S., & Larsen, H. (2003). Timber engineering. John Wiley & Sons. ISBN9780470844694.
34.
Zurück zum Zitat Aghayere, A., & Vigil, J. (2007). Structural wood design—A practice oriented approach using the ASD method (1st ed.). Wiley.CrossRef Aghayere, A., & Vigil, J. (2007). Structural wood design—A practice oriented approach using the ASD method (1st ed.). Wiley.CrossRef
35.
Zurück zum Zitat Kolb, J. (2008). Systems in timber engineering (1st ed.). Birkhauser Lignum DGfH.CrossRef Kolb, J. (2008). Systems in timber engineering (1st ed.). Birkhauser Lignum DGfH.CrossRef
36.
Zurück zum Zitat Karacebeyli, E., & Douglas, B. (2013). CLT handbook-US edition. FPInnovations and Binational Softwood Lumber Council, Point-Claire, Quebec. Karacebeyli, E., & Douglas, B. (2013). CLT handbook-US edition. FPInnovations and Binational Softwood Lumber Council, Point-Claire, Quebec.
37.
Zurück zum Zitat Sutton, Black, & Walker. (2011). Cross-laminated timber. An introduction to low-impact building materials. IP 17/11. BRE-IHS Press. Sutton, Black, & Walker. (2011). Cross-laminated timber. An introduction to low-impact building materials. IP 17/11. BRE-IHS Press.
38.
Zurück zum Zitat Richardson, L. R. (2004). Failure of floor assemblies constructed with timber joists, wood trusses or I joists during fire resistance tests. In V. Babrauskas (Ed.), Interflam 2004- proceedings of the tenth international conference, 5th–7th July 2004 (pp. 603–608). Interscience. Richardson, L. R. (2004). Failure of floor assemblies constructed with timber joists, wood trusses or I joists during fire resistance tests. In V. Babrauskas (Ed.), Interflam 2004- proceedings of the tenth international conference, 5th–7th July 2004 (pp. 603–608). Interscience.
39.
Zurück zum Zitat Dinwoodie, J. M. (2000). Timber- nature and behavior (1st ed.). Taylor and Francis. Dinwoodie, J. M. (2000). Timber- nature and behavior (1st ed.). Taylor and Francis.
40.
Zurück zum Zitat Illston, J. M. (1994). Construction materials—Their nature and behavior (2nd ed.). E & FN Spon. Illston, J. M. (1994). Construction materials—Their nature and behavior (2nd ed.). E & FN Spon.
41.
Zurück zum Zitat Ho, T. X., Dao, T. N., Aaleti, S., van de Lindt, J. W., & Rammer, D. R. (2017). Hybrid system of Unbonded post-tensioned CLT panels and light-frame wood shear walls. Journal of Structural Engineering, 143, 2.CrossRef Ho, T. X., Dao, T. N., Aaleti, S., van de Lindt, J. W., & Rammer, D. R. (2017). Hybrid system of Unbonded post-tensioned CLT panels and light-frame wood shear walls. Journal of Structural Engineering, 143, 2.CrossRef
43.
Zurück zum Zitat Brandon, D., Maluk, C., Ansell, M. P., Harris, R., Walker, P., Bisby, L., & Bregulla, J. (2015). Fire performance of metallic-free timber connections. Proceedings of the Institute of Civil Engineers, 168(4), 173–186. Brandon, D., Maluk, C., Ansell, M. P., Harris, R., Walker, P., Bisby, L., & Bregulla, J. (2015). Fire performance of metallic-free timber connections. Proceedings of the Institute of Civil Engineers, 168(4), 173–186.
44.
Zurück zum Zitat Buchanan, A., Deam, B., Fragiacomo, M., Pampanin, S., & Palermo, A. (2008). Multi-storey prestressed timber buildings in New Zealand. Structural Engineering International, 18(2), 166–173.CrossRef Buchanan, A., Deam, B., Fragiacomo, M., Pampanin, S., & Palermo, A. (2008). Multi-storey prestressed timber buildings in New Zealand. Structural Engineering International, 18(2), 166–173.CrossRef
45.
Zurück zum Zitat Leijten, A. J. M. (1998). Densified veneer wood reinforced timber joints with expanded tube fasteners. PhD thesis, Delft University Press. ISBN 90–407–1757-5. Leijten, A. J. M. (1998). Densified veneer wood reinforced timber joints with expanded tube fasteners. PhD thesis, Delft University Press. ISBN 90–407–1757-5.
46.
Zurück zum Zitat Fredlund, B. (1988). A model for heat & mass transfer in timber structures during fire: A theoretical, numerical and experimental study. LUTVDG/(TVBB-1003). Lund University. Fredlund, B. (1988). A model for heat & mass transfer in timber structures during fire: A theoretical, numerical and experimental study. LUTVDG/(TVBB-1003). Lund University.
47.
Zurück zum Zitat Janssens, M. (1994). Thermo-physical properties for wood pyrolysis models, Proceedings of the Pacific timber engineering conference, July 11th–15th 1994, Gold Cost, Australia. Janssens, M. (1994). Thermo-physical properties for wood pyrolysis models, Proceedings of the Pacific timber engineering conference, July 11th–15th 1994, Gold Cost, Australia.
48.
Zurück zum Zitat Knudson, R. M., & Schniewind, A. P. (1975). Performance of structural wood members exposed to fire. Forest Products Journal, 25(2), 23–32. Knudson, R. M., & Schniewind, A. P. (1975). Performance of structural wood members exposed to fire. Forest Products Journal, 25(2), 23–32.
49.
Zurück zum Zitat White, R. H., & Schaffer, E. (1978). Application of CMA programme to wood charring. Fire Technology, 15, 279–290.CrossRef White, R. H., & Schaffer, E. (1978). Application of CMA programme to wood charring. Fire Technology, 15, 279–290.CrossRef
50.
Zurück zum Zitat Thomas, G. (1997). Fire resistance of light timber framed walls and floors. Thesis. University of Canterbury Press. Thomas, G. (1997). Fire resistance of light timber framed walls and floors. Thesis. University of Canterbury Press.
51.
Zurück zum Zitat Harmathy, T. Z. (1988). Properties of building materials—Section 1 chapter 26. In P. J. Dinenno, C. L. Beyler, R. L. Custer, W. D. Walton, & J. M. Watts (Eds.), The SFPE handbook of fire protection engineering (pp. 388–391). NFPA. Harmathy, T. Z. (1988). Properties of building materials—Section 1 chapter 26. In P. J. Dinenno, C. L. Beyler, R. L. Custer, W. D. Walton, & J. M. Watts (Eds.), The SFPE handbook of fire protection engineering (pp. 388–391). NFPA.
52.
Zurück zum Zitat Gammon, B. W. (1987). Reliability analysis of wood frame wall assemblies exposed to fire. PhD thesis edn. University of California. Gammon, B. W. (1987). Reliability analysis of wood frame wall assemblies exposed to fire. PhD thesis edn. University of California.
53.
Zurück zum Zitat König, J., & Walleij, L. (2000). Timber frame assemblies exposed to standard and parametric fires part 2: A design model for standard fire exposure. I0001001. SP Trätek. König, J., & Walleij, L. (2000). Timber frame assemblies exposed to standard and parametric fires part 2: A design model for standard fire exposure. I0001001. SP Trätek.
54.
Zurück zum Zitat European Committee for Standardization. (2004). Eurocode 5: Design of timber structures—Part 1–2: General – Structural fire design. EN 1995-1-2. CEN. European Committee for Standardization. (2004). Eurocode 5: Design of timber structures—Part 1–2: General – Structural fire design. EN 1995-1-2. CEN.
55.
Zurück zum Zitat König, J. (2006). Effective thermal actions and thermal properties of timber members in natural fires. Fire and Materials, 30(2), 51–63.CrossRef König, J. (2006). Effective thermal actions and thermal properties of timber members in natural fires. Fire and Materials, 30(2), 51–63.CrossRef
56.
Zurück zum Zitat Dunlap, F. (1912). The specific heat of wood. Bulletin 110. US forest service. Dunlap, F. (1912). The specific heat of wood. Bulletin 110. US forest service.
57.
Zurück zum Zitat Fuller, J. J., Leichti, R. J., & White, R. H. (1992). Temperature distribution in a nailed gypsum stud joint exposed to fire. Fire and Materials, 16(2), 95–99.CrossRef Fuller, J. J., Leichti, R. J., & White, R. H. (1992). Temperature distribution in a nailed gypsum stud joint exposed to fire. Fire and Materials, 16(2), 95–99.CrossRef
58.
Zurück zum Zitat Mehaffey, J. R., Cuerrier, P., & Carisse, G. (1994). A model for predicting heat transfer through gypsum board wood-stud walls exposed to fire. Fire and Materials, 18(5), 297–305.CrossRef Mehaffey, J. R., Cuerrier, P., & Carisse, G. (1994). A model for predicting heat transfer through gypsum board wood-stud walls exposed to fire. Fire and Materials, 18(5), 297–305.CrossRef
59.
Zurück zum Zitat Lie, T. T. (1992). Structural fire protection. ASCE manuals and reports of engineering practice. ASCE. Lie, T. T. (1992). Structural fire protection. ASCE manuals and reports of engineering practice. ASCE.
60.
Zurück zum Zitat Cachim, P. B., & Franssen, J. M. (2009). Comparison between the charring rate model and the conductive model of Eurocode 5. Fire and Materials, 33(3), 129–143.CrossRef Cachim, P. B., & Franssen, J. M. (2009). Comparison between the charring rate model and the conductive model of Eurocode 5. Fire and Materials, 33(3), 129–143.CrossRef
62.
Zurück zum Zitat Buchanan, A. H. (2000). Fire performance of timber construction. Progress in Structural Engineering and Materials, 2(3), 278–289.CrossRef Buchanan, A. H. (2000). Fire performance of timber construction. Progress in Structural Engineering and Materials, 2(3), 278–289.CrossRef
63.
Zurück zum Zitat König, J., & Walleij, L. (1999). One-dimensional charring of timber exposed to standard and parametric fires in initially unprotected and post protection situations I9908029. SP Trätek. König, J., & Walleij, L. (1999). One-dimensional charring of timber exposed to standard and parametric fires in initially unprotected and post protection situations I9908029. SP Trätek.
64.
Zurück zum Zitat Matala, A., Hostikka, S., & Mangs, J. (2008). Estimation of pyrolysis model parameters for solid materials using thermogravimetric data. In Fire safety science—Proceedings of the 8 th international symposium (pp. 1213–1224). International Association of Fire Safety Science. Matala, A., Hostikka, S., & Mangs, J. (2008). Estimation of pyrolysis model parameters for solid materials using thermogravimetric data. In Fire safety science—Proceedings of the 8 th international symposium (pp. 1213–1224). International Association of Fire Safety Science.
65.
Zurück zum Zitat European Committee for Standardization. (2003). Structural timber—Strength classes. EN 338:2003. CEN. European Committee for Standardization. (2003). Structural timber—Strength classes. EN 338:2003. CEN.
66.
Zurück zum Zitat Bazan, I. M. M. (1980). Ultimate bending strength of timber beams. Thesis edn. Nova Scotia Technical College. Bazan, I. M. M. (1980). Ultimate bending strength of timber beams. Thesis edn. Nova Scotia Technical College.
70.
Zurück zum Zitat Richter, F., Atreya, A., Kotsovinos, P., & Rein, G. (2019). The effect of chemical composition on the charring of wood across scales. Proceedings of the Combustion Institute, 37(3), 4053–4061.CrossRef Richter, F., Atreya, A., Kotsovinos, P., & Rein, G. (2019). The effect of chemical composition on the charring of wood across scales. Proceedings of the Combustion Institute, 37(3), 4053–4061.CrossRef
71.
Zurück zum Zitat Wade, C., Hopkin, D., Su, J., Spearpoint, M., & Fleischmann, C. (2019). Enclosure fire model for mass timber construction—Benchmarking with a kinetic wood pyrolysis sub model. Interflam. Wade, C., Hopkin, D., Su, J., Spearpoint, M., & Fleischmann, C. (2019). Enclosure fire model for mass timber construction—Benchmarking with a kinetic wood pyrolysis sub model. Interflam.
72.
Zurück zum Zitat Harte, A. (2009). Timber engineering: An introduction. In M. Forde (Ed.), ICE manual of construction materials (Vol. 2, 1st ed., pp. 707–715). Thomas Telford. Harte, A. (2009). Timber engineering: An introduction. In M. Forde (Ed.), ICE manual of construction materials (Vol. 2, 1st ed., pp. 707–715). Thomas Telford.
73.
Zurück zum Zitat Thunnel, B. (1941). Hallfastetsegenskaper hos svenskt furuvirke utan kvistar och defekter. Handlingar Nr. 161. Ingenjorsvetenskapsakademien. Thunnel, B. (1941). Hallfastetsegenskaper hos svenskt furuvirke utan kvistar och defekter. Handlingar Nr. 161. Ingenjorsvetenskapsakademien.
74.
Zurück zum Zitat Hopkin, D., El-Rimawi, J., Silberschmidt, V., & Lennon, T. (2011). The impact of assumed fracture energy on the fire performance of timber beams. In F. Wald (Ed.), Proceedings of the 2nd international conference on applications in structural fire engineering, 29th April 2011 (pp. 349–354). Czech Technical University. Hopkin, D., El-Rimawi, J., Silberschmidt, V., & Lennon, T. (2011). The impact of assumed fracture energy on the fire performance of timber beams. In F. Wald (Ed.), Proceedings of the 2nd international conference on applications in structural fire engineering, 29th April 2011 (pp. 349–354). Czech Technical University.
75.
Zurück zum Zitat Hopkin, D., Lennon, T., El-Rimawi, J., & Silberschmidt, V. (2012). Advanced fire Design of Timber Structures Using Computational Techniques—Simple Indeterminate Structures. Journal of Structural Fire Engineering, 3(2), 215–233.CrossRef Hopkin, D., Lennon, T., El-Rimawi, J., & Silberschmidt, V. (2012). Advanced fire Design of Timber Structures Using Computational Techniques—Simple Indeterminate Structures. Journal of Structural Fire Engineering, 3(2), 215–233.CrossRef
76.
Zurück zum Zitat Kollman, F. (1951). Uber das mechanische verhalten von kiefernholz bei biegung und temperaturen zwischen 20 und 100. Meddelande 22. Svenska Traforskningsintitutet. Kollman, F. (1951). Uber das mechanische verhalten von kiefernholz bei biegung und temperaturen zwischen 20 und 100. Meddelande 22. Svenska Traforskningsintitutet.
77.
Zurück zum Zitat Schaffer, E. L. (1973). Effect of pyrolytic temperatures on the longitudinal strength of dry Douglas fir. ASTM Journal for Testing and Evaluation, 1(4), 319–329.CrossRef Schaffer, E. L. (1973). Effect of pyrolytic temperatures on the longitudinal strength of dry Douglas fir. ASTM Journal for Testing and Evaluation, 1(4), 319–329.CrossRef
78.
Zurück zum Zitat Schaffer, E. L. (1984). Structural fire design: Wood. FFL 450. Forest products lab. Schaffer, E. L. (1984). Structural fire design: Wood. FFL 450. Forest products lab.
79.
Zurück zum Zitat Gerhards, C. C. (1982). Effect of moisture content and temperature on mechanical properties of wood: An analysis of immediate effects. Wood and Fiber Science, 14(1), 4–36. Gerhards, C. C. (1982). Effect of moisture content and temperature on mechanical properties of wood: An analysis of immediate effects. Wood and Fiber Science, 14(1), 4–36.
80.
Zurück zum Zitat Östman, B. (1985). Wood tensile strength at temperatures and moisture contents simulating fire conditions. Wood and Science Technology, 19, 103–106.CrossRef Östman, B. (1985). Wood tensile strength at temperatures and moisture contents simulating fire conditions. Wood and Science Technology, 19, 103–106.CrossRef
81.
Zurück zum Zitat Lau, P. W. C. and Barrett, J. D. (1997). Modelling tension strength behavior of structural lumber exposed to elevated temperatures. Proceedings of the fourth international symposium on fire safety science. Australia: Melbourne Lau, P. W. C. and Barrett, J. D. (1997). Modelling tension strength behavior of structural lumber exposed to elevated temperatures. Proceedings of the fourth international symposium on fire safety science. Australia: Melbourne
82.
Zurück zum Zitat Konig, J., & Noren, J., (1991). Fire exposed load bearing wood frame members. 9112080. Stockholm: SP Trätek. Konig, J., & Noren, J., (1991). Fire exposed load bearing wood frame members. 9112080. Stockholm: SP Trätek.
83.
Zurück zum Zitat Collier, P. (1993). A method to predict the fire resistance performance of load bearing light timber framed walls. Building research association of New Zealand. Collier, P. (1993). A method to predict the fire resistance performance of load bearing light timber framed walls. Building research association of New Zealand.
84.
Zurück zum Zitat König, J., Noren, J., Olesen, F. B., & Hansen, F. T. (1997). Timber frame assemblies exposed to standard and parametric fires part 1: Fire tests. I9702015. SP Trätek. König, J., Noren, J., Olesen, F. B., & Hansen, F. T. (1997). Timber frame assemblies exposed to standard and parametric fires part 1: Fire tests. I9702015. SP Trätek.
85.
Zurück zum Zitat Young, S. A. (1996). Elevated temperature mechanical properties of radiata pine in compression. Internal report for CESARE. Victoria University. Young, S. A. (1996). Elevated temperature mechanical properties of radiata pine in compression. Internal report for CESARE. Victoria University.
86.
Zurück zum Zitat Nyman, C. (1980). The effect of temperature and moisture on the strength of wood and glue joists. VTT forest products no. 6. Technical Research Centre of Finland. Nyman, C. (1980). The effect of temperature and moisture on the strength of wood and glue joists. VTT forest products no. 6. Technical Research Centre of Finland.
87.
Zurück zum Zitat Preusser, R. (1968). Plastic and elastic behavior of wood affected by heat in open systems. Holztechnologie, 9(4), 229–231. Preusser, R. (1968). Plastic and elastic behavior of wood affected by heat in open systems. Holztechnologie, 9(4), 229–231.
88.
Zurück zum Zitat British Standards Institution. (2004). Gypsum plasterboards- definitions, requirements and test methods. BS EN 520:2004. BSI. British Standards Institution. (2004). Gypsum plasterboards- definitions, requirements and test methods. BS EN 520:2004. BSI.
89.
Zurück zum Zitat ASTM C1396 / C1396M – 17 (2017) Standard specification for gypsum board. ASTM International, . ASTM C1396 / C1396M – 17 (2017) Standard specification for gypsum board. ASTM International, .
90.
Zurück zum Zitat Thomas, G. (2002). Thermal properties of gypsum plasterboard at high temperatures. Fire and Materials, 26(1), 37–45.CrossRef Thomas, G. (2002). Thermal properties of gypsum plasterboard at high temperatures. Fire and Materials, 26(1), 37–45.CrossRef
91.
Zurück zum Zitat Clancy, P. (2001). Advances in modelling heat transfer through wood framed walls in fire. Fire and Materials, 25(6), 241–254.CrossRef Clancy, P. (2001). Advances in modelling heat transfer through wood framed walls in fire. Fire and Materials, 25(6), 241–254.CrossRef
92.
Zurück zum Zitat Sultan, M. A. (1996). A model for predicting heat transfer through non-insulated unloaded steel-stud gypsum board wall assemblies exposed to fire. Fire Technology, 32(3), 239–259.CrossRef Sultan, M. A. (1996). A model for predicting heat transfer through non-insulated unloaded steel-stud gypsum board wall assemblies exposed to fire. Fire Technology, 32(3), 239–259.CrossRef
93.
Zurück zum Zitat Benichou, N., Sultan, M. A., Maccallum, C., & Hum, J. (2001). Thermal properties of wood, gypsum and insulation at elevated temperatures. IR-710. NRC. Benichou, N., Sultan, M. A., Maccallum, C., & Hum, J. (2001). Thermal properties of wood, gypsum and insulation at elevated temperatures. IR-710. NRC.
94.
Zurück zum Zitat Ang, C. N., & Wang, Y. C. (2009). Effect of moisture transfer on the specific heat of gypsum plasterboard at high temperatures. Construction and Building Materials, 23(2), 675–686.CrossRef Ang, C. N., & Wang, Y. C. (2009). Effect of moisture transfer on the specific heat of gypsum plasterboard at high temperatures. Construction and Building Materials, 23(2), 675–686.CrossRef
95.
Zurück zum Zitat Park, S. H., Manzello, S. L., Bentz, D. P., & Mizukami, T. (2009). Determining thermal properties of gypsum board at elevated temperatures. Fire and Materials, 34(5), 237–250. Park, S. H., Manzello, S. L., Bentz, D. P., & Mizukami, T. (2009). Determining thermal properties of gypsum board at elevated temperatures. Fire and Materials, 34(5), 237–250.
96.
Zurück zum Zitat Wakili, K. G., Hugi, E., Wullschleger, L., & Frank, T. H. (2007). Gypsum board in fire—modeling and experimental validation. Journal of Fire Sciences, 25(3), 267–282.CrossRef Wakili, K. G., Hugi, E., Wullschleger, L., & Frank, T. H. (2007). Gypsum board in fire—modeling and experimental validation. Journal of Fire Sciences, 25(3), 267–282.CrossRef
97.
Zurück zum Zitat Thomas, G. (2010). Modelling thermal performance of gypsum plasterboard-lined light timber frame walls using SAFIR and TASEF. Fire and Materials, 34(8), 385–406.CrossRef Thomas, G. (2010). Modelling thermal performance of gypsum plasterboard-lined light timber frame walls using SAFIR and TASEF. Fire and Materials, 34(8), 385–406.CrossRef
98.
Zurück zum Zitat Schleifer, V. (2009). Zum Verhalten von raumabschliessenden mehrschichtigen Holzbauteilen im Brandfall. PhD Thesis ETH No. 18156. ETH. Schleifer, V. (2009). Zum Verhalten von raumabschliessenden mehrschichtigen Holzbauteilen im Brandfall. PhD Thesis ETH No. 18156. ETH.
99.
Zurück zum Zitat Lennon, T., Hopkin, D., El-Rimawi, J., & Silberschmidt, V. (2010). Large scale natural fire tests on protected engineered timber floor systems. Fire Safety Journal, 45(2010), 168–182.CrossRef Lennon, T., Hopkin, D., El-Rimawi, J., & Silberschmidt, V. (2010). Large scale natural fire tests on protected engineered timber floor systems. Fire Safety Journal, 45(2010), 168–182.CrossRef
100.
Zurück zum Zitat Jansson, R. (2004). Measurement of thermal properties at elevated temperatures- Brandforsk project 328–031. SP REPORT 2004:46. SNTRI. Jansson, R. (2004). Measurement of thermal properties at elevated temperatures- Brandforsk project 328–031. SP REPORT 2004:46. SNTRI.
101.
Zurück zum Zitat Twilt, L., & Van Oerle, J. (1999). Fire characteristics for use in a natural fire design of building structures. CEC agreement 7210-SA/125–937. Profil Arbed. Twilt, L., & Van Oerle, J. (1999). Fire characteristics for use in a natural fire design of building structures. CEC agreement 7210-SA/125–937. Profil Arbed.
102.
Zurück zum Zitat Feng, M., Wang, Y. C., & Davies, J. M. (2003). Thermal performance of cold-formed thin-walled steel panel systems in fire. Fire Safety Journal, 38(4), 365–394.CrossRef Feng, M., Wang, Y. C., & Davies, J. M. (2003). Thermal performance of cold-formed thin-walled steel panel systems in fire. Fire Safety Journal, 38(4), 365–394.CrossRef
103.
Zurück zum Zitat Just, A., Schmid, J., & König, J. (2010). Failure times of gypsum boards. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 593–601). DESTech. Just, A., Schmid, J., & König, J. (2010). Failure times of gypsum boards. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 593–601). DESTech.
104.
Zurück zum Zitat Just, A. (2010). Structural fire design of timber frame assemblies insulated by glass wool and covered by gypsum plasterboard. Tallinn University of Technology. Just, A. (2010). Structural fire design of timber frame assemblies insulated by glass wool and covered by gypsum plasterboard. Tallinn University of Technology.
105.
Zurück zum Zitat Just, A. (2010). Post protection behavior of wooden wall and floor structures completely filled with glass wool. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 584–592). DESTech. Just, A. (2010). Post protection behavior of wooden wall and floor structures completely filled with glass wool. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 584–592). DESTech.
106.
Zurück zum Zitat Sultan, M. A. (2010). Comparison of gypsum board fall-off in wall and floor assemblies exposed to furnace heat. In S. Grayson (Ed.), 12th international fire science and engineering conference (Interflam), 5th–7th July 2010 (pp. 1677–1682). Interscience. Sultan, M. A. (2010). Comparison of gypsum board fall-off in wall and floor assemblies exposed to furnace heat. In S. Grayson (Ed.), 12th international fire science and engineering conference (Interflam), 5th–7th July 2010 (pp. 1677–1682). Interscience.
108.
Zurück zum Zitat Brandon, D., Just, A., Andersson, P., & Östman, B. (2018). Mitigation of fire spread in multi-storey timber buildings – Statistical analysis and guidelines for design. RISE Report, 2018, 43. Brandon, D., Just, A., Andersson, P., & Östman, B. (2018). Mitigation of fire spread in multi-storey timber buildings – Statistical analysis and guidelines for design. RISE Report, 2018, 43.
109.
Zurück zum Zitat Brandon, D., Schmid, J., Su, J., Hoehler, M., Östman, B. & Kimball, A. (2018). Experimental Fire-Simulator for Post-Flashover Compartment Fires. In: SiF 2018—The 10th International Conference on Structures in Fire, Belfast, UK: Paper presented at SiF 2018 - The 10th International Conference on Structures in Fire, Belfast, UK. New University of Ulster. Brandon, D., Schmid, J., Su, J., Hoehler, M., Östman, B. & Kimball, A. (2018). Experimental Fire-Simulator for Post-Flashover Compartment Fires. In: SiF 2018—The 10th International Conference on Structures in Fire, Belfast, UK: Paper presented at SiF 2018 - The 10th International Conference on Structures in Fire, Belfast, UK. New University of Ulster.
110.
113.
Zurück zum Zitat Brandon, D., Schmid, J., & Just, A. (2016). Eurocode 5 design in comparison with fire resistance tests of unprotected timber beams. In Proceedings of 11th Conference on Performance-Based Codes And Fire Safety Design—SFPE Brandon, D., Schmid, J., & Just, A. (2016). Eurocode 5 design in comparison with fire resistance tests of unprotected timber beams. In Proceedings of 11th Conference on Performance-Based Codes And Fire Safety Design—SFPE
115.
Zurück zum Zitat Klippel, M., Schmid, J., Frangi, A. (2016). Fire design of CLT, Proceedings of the Joint Conference of COST Actions FP1402 and FP1404, March 10–11, Stockholm, Sweden Klippel, M., Schmid, J., Frangi, A. (2016). Fire design of CLT, Proceedings of the Joint Conference of COST Actions FP1402 and FP1404, March 10–11, Stockholm, Sweden
116.
Zurück zum Zitat Schmid, J., Just, A., Klippel, M., & Fragiacomo, M. (2015). The reduced cross-section method for evaluation of the fire resistance of timber members: Discussion and determination of the zero-strength layer. Fire Tech., 51(6), 1285–1309.CrossRef Schmid, J., Just, A., Klippel, M., & Fragiacomo, M. (2015). The reduced cross-section method for evaluation of the fire resistance of timber members: Discussion and determination of the zero-strength layer. Fire Tech., 51(6), 1285–1309.CrossRef
118.
Zurück zum Zitat Palma, P. (2016). Fire behavior of timber connections. PhD Thesis, ETH Zürich: Dept. of Civil, Environmental and Geomatic Engineering (D-BAUG) Palma, P. (2016). Fire behavior of timber connections. PhD Thesis, ETH Zürich: Dept. of Civil, Environmental and Geomatic Engineering (D-BAUG)
119.
Zurück zum Zitat Barber, D. (2017). Glulam connection fire test summary report. Arup USA. Barber, D. (2017). Glulam connection fire test summary report. Arup USA.
120.
Zurück zum Zitat Ronstad, D., Ek, N. (2018). Study of glued-laminated timber connections with high fire resistance using expanded steel tubes. Master Thesis, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Sweden. Ronstad, D., Ek, N. (2018). Study of glued-laminated timber connections with high fire resistance using expanded steel tubes. Master Thesis, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Sweden.
121.
Zurück zum Zitat Brandon, D., Landel, P., Ziethen, R., Albrektsson, J, Just, A. (2019) High-fire-resistance glulam connections for tall timber buildings. RISE Report, 2019:26. Research Institutes of Sweden. ISBN 978–91–88907-52-3. Brandon, D., Landel, P., Ziethen, R., Albrektsson, J, Just, A. (2019) High-fire-resistance glulam connections for tall timber buildings. RISE Report, 2019:26. Research Institutes of Sweden. ISBN 978–91–88907-52-3.
123.
Zurück zum Zitat Lineham, S., Thomson, D., Bartlett, A., Bisby, L., & Hadden, R. (2016). Structural response of fire-exposed cross-laminated timber beams under sustained loads. Fire Safety Journal, 85, 23–34.CrossRef Lineham, S., Thomson, D., Bartlett, A., Bisby, L., & Hadden, R. (2016). Structural response of fire-exposed cross-laminated timber beams under sustained loads. Fire Safety Journal, 85, 23–34.CrossRef
124.
Zurück zum Zitat Brandon, D., Just, A., Lange, D., & Tiso, M. (2017). Parametric fire design—Zero-strength-layers and charring rates. In R. Görlacher (Ed.), INTER proceedings meeting fifty (Kyoto). INTER / 50–16 – 2. Timber Scientific Publishing, KIT Holzbau und Baukonstruktionen. ISSN 2199-9740. http://holz.vaka.kit.edu/public/inter2017.pdf Brandon, D., Just, A., Lange, D., & Tiso, M. (2017). Parametric fire design—Zero-strength-layers and charring rates. In R. Görlacher (Ed.), INTER proceedings meeting fifty (Kyoto). INTER / 50–16 – 2. Timber Scientific Publishing, KIT Holzbau und Baukonstruktionen. ISSN 2199-9740. http://​holz.​vaka.​kit.​edu/​public/​inter2017.​pdf
127.
Zurück zum Zitat Lennon, T., Bullock, M. J., Enjily, V. (2000). The fire resistance of medium-rise timber frame buildings. BRE Report No 79485–1, BRE, Watford, UK. Lennon, T., Bullock, M. J., Enjily, V. (2000). The fire resistance of medium-rise timber frame buildings. BRE Report No 79485–1, BRE, Watford, UK.
128.
Zurück zum Zitat Hakkarainen, T. (2002). Post-flashover fire in light and heavy timber construction compartments. Journal of Fire Sciences, 20(2002), 133–175.CrossRef Hakkarainen, T. (2002). Post-flashover fire in light and heavy timber construction compartments. Journal of Fire Sciences, 20(2002), 133–175.CrossRef
129.
Zurück zum Zitat Frangi, A., & Fontana, M. (2005). Fire performance of timber structures under natural fire conditions. Fire safety science symposium 8: 279–290. IAFSS. Frangi, A., & Fontana, M. (2005). Fire performance of timber structures under natural fire conditions. Fire safety science symposium 8: 279–290. IAFSS.
130.
Zurück zum Zitat Frangi, A., Bochicchio, G., Ceccotti, A., & Lauriola, M. P. (2008). Natural full-scale fire test on a 3 storey XLam timber building, proceedings of the 10th world conference on timber engineering (WCTE), 2nd-5th June 2008. Curran Associates, Inc. Frangi, A., Bochicchio, G., Ceccotti, A., & Lauriola, M. P. (2008). Natural full-scale fire test on a 3 storey XLam timber building, proceedings of the 10th world conference on timber engineering (WCTE), 2nd-5th June 2008. Curran Associates, Inc.
131.
Zurück zum Zitat Frangi, A., Bochicchio, G., Ceccotti, A., & Lauriola, M. (2008). Natural full-scale fire test on a 3 storey XLam timber building. Engineered Wood Products Association. Frangi, A., Bochicchio, G., Ceccotti, A., & Lauriola, M. (2008). Natural full-scale fire test on a 3 storey XLam timber building. Engineered Wood Products Association.
132.
Zurück zum Zitat Frangi, A., Erchinger, C., & Fontana, M. (2008). Charring model for timber frame floor assemblies with void cavities. Fire Safety Journal, 43(8), 551–564.CrossRef Frangi, A., Erchinger, C., & Fontana, M. (2008). Charring model for timber frame floor assemblies with void cavities. Fire Safety Journal, 43(8), 551–564.CrossRef
133.
Zurück zum Zitat McGregor, C. J. (2013). Contribution of cross-laminated timber panels to room fires. Master thesis. Department of Civil and Environmental Engineering Carleton University. Ottawa-Carleton Institute of Civil and Environmental Engineering, Ottawa, Ontario, Canada. McGregor, C. J. (2013). Contribution of cross-laminated timber panels to room fires. Master thesis. Department of Civil and Environmental Engineering Carleton University. Ottawa-Carleton Institute of Civil and Environmental Engineering, Ottawa, Ontario, Canada.
134.
Zurück zum Zitat Li, X., Zhang, X., Hadjisophocleus, G., & McGregor, C. (2014). Experimental study of combustible and non-combustible construction in a natural fire. Fire Technology, 2014. Li, X., Zhang, X., Hadjisophocleus, G., & McGregor, C. (2014). Experimental study of combustible and non-combustible construction in a natural fire. Fire Technology, 2014.
135.
Zurück zum Zitat Medina Hevia, A. R. (2014). Fire resistance of partially protected cross-laminated timber rooms. Master thesis. Department of Civil and Environmental Engineering Carleton University. Ottawa-Carleton Institute of Civil and Environmental Engineering, Ottawa, Ontario, Canada. Medina Hevia, A. R. (2014). Fire resistance of partially protected cross-laminated timber rooms. Master thesis. Department of Civil and Environmental Engineering Carleton University. Ottawa-Carleton Institute of Civil and Environmental Engineering, Ottawa, Ontario, Canada.
136.
Zurück zum Zitat Su, J. Z. and Lougheed, G. D. (2014). Report to research consortium for wood and wood hybrid mid-rise buildings—Fire safety summary—Fire research conducted for the project on mid-rise wood construction. National Research Council Canada, Client report: A1–004377.1, Ottawa, Ontario, Canada. Su, J. Z. and Lougheed, G. D. (2014). Report to research consortium for wood and wood hybrid mid-rise buildings—Fire safety summary—Fire research conducted for the project on mid-rise wood construction. National Research Council Canada, Client report: A1–004377.1, Ottawa, Ontario, Canada.
137.
Zurück zum Zitat Su, J. Z. and Muradori, S. (2015). Fire demonstration—Cross-laminated timber stair/elevator shaft. National Research Council Canada, Client report: A1–004377.1, Ottawa, Ontario, Canada Su, J. Z. and Muradori, S. (2015). Fire demonstration—Cross-laminated timber stair/elevator shaft. National Research Council Canada, Client report: A1–004377.1, Ottawa, Ontario, Canada
138.
Zurück zum Zitat Kolaitis, D. I., Asimakopoulou, E. K., & Founti, M. A. (2014). Fire protection of light and massive timber elements using gypsum plasterboards and wood based panels: A large-scale compartment fire test. Construction and Building Materials, 73(2014), 163–170.CrossRef Kolaitis, D. I., Asimakopoulou, E. K., & Founti, M. A. (2014). Fire protection of light and massive timber elements using gypsum plasterboards and wood based panels: A large-scale compartment fire test. Construction and Building Materials, 73(2014), 163–170.CrossRef
140.
Zurück zum Zitat Hox, K. (2015). Branntest av massivtre. SPFR-rapport SPFR A15101. SP Fire Research, Trondheim, Norway (unpublished) (in Norwegian) Hox, K. (2015). Branntest av massivtre. SPFR-rapport SPFR A15101. SP Fire Research, Trondheim, Norway (unpublished) (in Norwegian)
141.
Zurück zum Zitat Janssens. (2017). Development of a fire performance assessment methodology for qualifying cross-laminated timber adhesives. South West Research Institute. Janssens. (2017). Development of a fire performance assessment methodology for qualifying cross-laminated timber adhesives. South West Research Institute.
142.
Zurück zum Zitat Su, J., Lafrance, P.-S.., Hoehler, M., Bundy, M. (2018). Cross Laminated Timber Compartment Fire Tests for Research on Fire Safety Challenges of Tall Wood Buildings—Phase 2. Su, J., Lafrance, P.-S.., Hoehler, M., Bundy, M. (2018). Cross Laminated Timber Compartment Fire Tests for Research on Fire Safety Challenges of Tall Wood Buildings—Phase 2.
143.
Zurück zum Zitat Zelinka, S. L., Hasburgh, L. E., Bourne, K. L., Tucholski, D. R., & Oullette, J. P. (2018). Compartment fire testing of a two-story mass timber building. General technical report FPL-GTR-247. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. Zelinka, S. L., Hasburgh, L. E., Bourne, K. L., Tucholski, D. R., & Oullette, J. P. (2018). Compartment fire testing of a two-story mass timber building. General technical report FPL-GTR-247. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
144.
Zurück zum Zitat Su, J., Leroux, P., Lafrance, P.-S., Berzins, R., Gibbs, E., Weinfurter, M. (2018). Fire testing of rooms with exposed wood surfaces in encapsulated mass timber construction. NRC CNRC Report A1–012710.1 Su, J., Leroux, P., Lafrance, P.-S., Berzins, R., Gibbs, E., Weinfurter, M. (2018). Fire testing of rooms with exposed wood surfaces in encapsulated mass timber construction. NRC CNRC Report A1–012710.1
145.
Zurück zum Zitat Brandon, D. (2018) Fire Safety Challenges of Tall Wood Buildings—Phase 2: Task 4 -Engineering methods. National Fire Protection Association. NFPA report: FPRF-2018-4. Brandon, D. (2018) Fire Safety Challenges of Tall Wood Buildings—Phase 2: Task 4 -Engineering methods. National Fire Protection Association. NFPA report: FPRF-2018-4.
146.
Zurück zum Zitat APA – The Engineered Wood Association. (2018). ANSI/APA PRG 320-2018 Standard for performance-rated cross-laminated timber. APA – The Engineered Wood Association, Tacoma, WA. APA – The Engineered Wood Association. (2018). ANSI/APA PRG 320-2018 Standard for performance-rated cross-laminated timber. APA – The Engineered Wood Association, Tacoma, WA.
148.
Zurück zum Zitat Clauβ, S., Gabriel, J., Karbach, A., Matner, M., & Niemz, P. (2011). Influence of the adhesive formulation on the mechanical properties and bonding performance of polyurethane prepolymers. Holzforschung, 65, 835–844.CrossRef Clauβ, S., Gabriel, J., Karbach, A., Matner, M., & Niemz, P. (2011). Influence of the adhesive formulation on the mechanical properties and bonding performance of polyurethane prepolymers. Holzforschung, 65, 835–844.CrossRef
149.
Zurück zum Zitat Emberley, R., Nicolaidis, A., Fernando, D., & Torero, J. L. (2016). Changing failure modes of cross-laminated timber. Structures in Fire, 643–649. Emberley, R., Nicolaidis, A., Fernando, D., & Torero, J. L. (2016). Changing failure modes of cross-laminated timber. Structures in Fire, 643–649.
150.
Zurück zum Zitat Nicolaidis, A., Emberley, R., Fernando, D., Torero, J. L. (2016). Thermally driven failure mode changes in bonded timber joints. In: Proceedings of the World Conference on Timber Engineering, Vienna, Austria Nicolaidis, A., Emberley, R., Fernando, D., Torero, J. L. (2016). Thermally driven failure mode changes in bonded timber joints. In: Proceedings of the World Conference on Timber Engineering, Vienna, Austria
151.
Zurück zum Zitat Butler, C. P. (1971). Notes on charring rates in wood. Fire research note 896. FRS. Butler, C. P. (1971). Notes on charring rates in wood. Fire research note 896. FRS.
152.
Zurück zum Zitat Schaffer, E. L. (1967). Charring rate of selected woods- transverse to the grain. US forest service research paper FPL69. Forest products laboratory. Schaffer, E. L. (1967). Charring rate of selected woods- transverse to the grain. US forest service research paper FPL69. Forest products laboratory.
153.
Zurück zum Zitat Standards Association of Australia. (1990). Timber structures, part 4: Fire resistance of structural timber members. AS1720.4–1990. SAA. Standards Association of Australia. (1990). Timber structures, part 4: Fire resistance of structural timber members. AS1720.4–1990. SAA.
154.
Zurück zum Zitat White, R. H. (1988). Charring rates of different wood species. PhD thesis edn. University of Wisconsin. White, R. H. (1988). Charring rates of different wood species. PhD thesis edn. University of Wisconsin.
155.
Zurück zum Zitat International Organization for Standardization. (1999). Fire-resistance tests - elements of building construction—Part 1: General requirements. ISO 834-1:1999. ISO. International Organization for Standardization. (1999). Fire-resistance tests - elements of building construction—Part 1: General requirements. ISO 834-1:1999. ISO.
156.
Zurück zum Zitat Hadvig, S. (1981). Charring of wood in building fires. Research. Report edn. Technical University of Denmark. Hadvig, S. (1981). Charring of wood in building fires. Research. Report edn. Technical University of Denmark.
157.
Zurück zum Zitat Hansen, F. T., & Olesen, F. B. (1992). Full-scale tests on loaded glulam beams exposed to natural fires. Researchreport edn. Aalborg University. Hansen, F. T., & Olesen, F. B. (1992). Full-scale tests on loaded glulam beams exposed to natural fires. Researchreport edn. Aalborg University.
158.
Zurück zum Zitat Hopkin, D., Spearpoint, M., Gorksa, C., Krenn, H., Sleik, T., & Milner, M. (2020). Compliance road-map for the structural fire safety design of mass timber buildings in England. SFPE Europe Q4. Hopkin, D., Spearpoint, M., Gorksa, C., Krenn, H., Sleik, T., & Milner, M. (2020). Compliance road-map for the structural fire safety design of mass timber buildings in England. SFPE Europe Q4.
159.
Zurück zum Zitat Brandon, D., & Dagenais, C. (2018). Fire safety challenges of tall wood buildings – Phase 2: Task 5 – Experimental study of delamination of cross laminated timber (CLT) in fire. Fire Protection Research Foundation, Quincy, MA. Brandon, D., & Dagenais, C. (2018). Fire safety challenges of tall wood buildings – Phase 2: Task 5 – Experimental study of delamination of cross laminated timber (CLT) in fire. Fire Protection Research Foundation, Quincy, MA.
160.
Zurück zum Zitat Barber, D., Crielaard, R., Li, X. (2016). Towards fire safe design of exposed timber in tall timber buildings. In Proc. World Conference of Timber Engineering, August 22–25, 2016, Vienna, Austria Barber, D., Crielaard, R., Li, X. (2016). Towards fire safe design of exposed timber in tall timber buildings. In Proc. World Conference of Timber Engineering, August 22–25, 2016, Vienna, Austria
161.
Zurück zum Zitat Crielaard, R. (2015). Self-extinguishment of cross-laminated timber. Master’s Thesis report, Faculty of Civil Engineering and Geosciences, Delft University of Technology Crielaard, R. (2015). Self-extinguishment of cross-laminated timber. Master’s Thesis report, Faculty of Civil Engineering and Geosciences, Delft University of Technology
162.
Zurück zum Zitat Friquin, K. L. (2010). “Charring rates of heavy timber structures for fire safety design—A study of the charring rates under various fire exposures and the influencing factors.” PhD Thesis. Trondheim: Norwegian University of Science and Technology. Friquin, K. L. (2010). “Charring rates of heavy timber structures for fire safety design—A study of the charring rates under various fire exposures and the influencing factors.” PhD Thesis. Trondheim: Norwegian University of Science and Technology.
163.
Zurück zum Zitat Brandon, D. (2016). Practical method to determine the contribution of structural timber to the heat release rate and fire temperature of post-flashover compartment fires. Technical Research Institute of Sweden SP, SP Rapport 2016:68, Borås, Sweden. Brandon, D. (2016). Practical method to determine the contribution of structural timber to the heat release rate and fire temperature of post-flashover compartment fires. Technical Research Institute of Sweden SP, SP Rapport 2016:68, Borås, Sweden.
165.
Zurück zum Zitat Hopkin, D., Anastasov, S., & Brandon, D. (2017). Reviewing the veracity of a zone-model-based-approach for the assessment of enclosures formed of exposed CLT, in M Gillie, Y Wang Applications of Fire Engineering-proceedings of the International Conference of Applications of Structural Fire Engineering, Manchester, UK, pp. 151–160. Hopkin, D., Anastasov, S., & Brandon, D. (2017). Reviewing the veracity of a zone-model-based-approach for the assessment of enclosures formed of exposed CLT, in M Gillie, Y Wang Applications of Fire Engineering-proceedings of the International Conference of Applications of Structural Fire Engineering, Manchester, UK, pp. 151–160.
167.
Zurück zum Zitat Maluk, C. (2014). Development and application of a novel test method for studying the fire behaviour of cfrp prestressed concrete structural elements. Thesis, University of Edin-burgh Press, UK. Maluk, C. (2014). Development and application of a novel test method for studying the fire behaviour of cfrp prestressed concrete structural elements. Thesis, University of Edin-burgh Press, UK.
168.
169.
Zurück zum Zitat Wade, C (2019). A theoretical model of fully developed fire in mass timber enclosures. PhD Thesis, University of Canterbury, Department of Civil and Natural Resources Engineering Wade, C (2019). A theoretical model of fully developed fire in mass timber enclosures. PhD Thesis, University of Canterbury, Department of Civil and Natural Resources Engineering
170.
Zurück zum Zitat Frangi, A., & König, J. (2011). Effect of increased charring on the narrow side of rectangular timber cross-sections exposed to fire on three or four sides. Fire and Materials, 35(8), 593–605.CrossRef Frangi, A., & König, J. (2011). Effect of increased charring on the narrow side of rectangular timber cross-sections exposed to fire on three or four sides. Fire and Materials, 35(8), 593–605.CrossRef
171.
Zurück zum Zitat Harmathy, T. Z. (1965). Ten rules of fire endurance rating. Fire Technology, 1(2), 93–102.CrossRef Harmathy, T. Z. (1965). Ten rules of fire endurance rating. Fire Technology, 1(2), 93–102.CrossRef
172.
Zurück zum Zitat Östman, B., Mikkola, E., Stein, R., Frangi, A., König, J., Dhima, D., Hakkarainen, T., & Bregulla, J. (2010). Fire safety in timber buildings- technical guideline for Europe. SPReport 2010:19. SP Trätek. Östman, B., Mikkola, E., Stein, R., Frangi, A., König, J., Dhima, D., Hakkarainen, T., & Bregulla, J. (2010). Fire safety in timber buildings- technical guideline for Europe. SPReport 2010:19. SP Trätek.
173.
Zurück zum Zitat American Wood Council. (2018). National design specification (NDS) for wood construction with commentary. American Wood Council. (2018). National design specification (NDS) for wood construction with commentary.
174.
Zurück zum Zitat AWC (2018). Calculating the fire resistance of wood members and assemblies. Technical Report No.10. American Wood Council, Leesburg, VA, USA AWC (2018). Calculating the fire resistance of wood members and assemblies. Technical Report No.10. American Wood Council, Leesburg, VA, USA
175.
Zurück zum Zitat Standards New Zealand. (1993). Code of practice for timber design. NZS 3603:1993. SNZ. Standards New Zealand. (1993). Code of practice for timber design. NZS 3603:1993. SNZ.
176.
Zurück zum Zitat Schmid, J., König, J., & Kohler, J. (2010). Design model for fire exposed cross-laminated timber. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 511–519). DEStech. Schmid, J., König, J., & Kohler, J. (2010). Design model for fire exposed cross-laminated timber. In V. R. Kodur & J. M. Franssen (Eds.), Proceedings of the sixth international conference on structures in fire, 2nd-4th June 2010 (pp. 511–519). DEStech.
177.
Zurück zum Zitat British Standards Institution. (2002). Eurocode 1: Actions on structures – Part 1–2: General actions – Actions on structures exposed to fire. BS EN 1991-1-2. BSI. British Standards Institution. (2002). Eurocode 1: Actions on structures – Part 1–2: General actions – Actions on structures exposed to fire. BS EN 1991-1-2. BSI.
178.
Zurück zum Zitat Magnusson, S. E., & Thelandersson, S. (1970). Temperature—Time curves of complete process of fire development. Bulletin of division of structural mechanics and concrete construction (Vol. 16). Lund University of Technology. Magnusson, S. E., & Thelandersson, S. (1970). Temperature—Time curves of complete process of fire development. Bulletin of division of structural mechanics and concrete construction (Vol. 16). Lund University of Technology.
179.
Zurück zum Zitat Buchanan, A. H. (1990). Bending strength of lumber. Journal of Structural Engineering, 116(5), 1213–1229.CrossRef Buchanan, A. H. (1990). Bending strength of lumber. Journal of Structural Engineering, 116(5), 1213–1229.CrossRef
180.
Zurück zum Zitat European Committee for Standardization. (2004). Eurocode 5: Design of timber structures—Part 1-1: General – Common rules and rules for buildings. EN 1995-1-1. CEN. European Committee for Standardization. (2004). Eurocode 5: Design of timber structures—Part 1-1: General – Common rules and rules for buildings. EN 1995-1-1. CEN.
181.
Zurück zum Zitat Tiso, M., Just, A., Schmid, J., & Klippel, M. (2018). Effective cross‐sectional method for timber frame assemblies—definition of coefficients and zero‐strength layers. Fire and Materials, 42(8), 897–913. Tiso, M., Just, A., Schmid, J., & Klippel, M. (2018). Effective cross‐sectional method for timber frame assemblies—definition of coefficients and zero‐strength layers. Fire and Materials, 42(8), 897–913.
Metadaten
Titel
Timber Structures
verfasst von
Daniel Brandon
Danny Hopkin
Richard Emberley
Colleen Wade
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-77123-2_8