Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

07.02.2019

Time-dependent analysis of electroosmotic fluid flow in a microchannel

verfasst von: V. K. Narla, Dharmendra Tripathi, G. P. Raja Sekhar

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work models electroosmotic induced fluid flow in a microfluidic device. For theoretical analysis, the geometry of this device is considered as an asymmetric, narrow, wavy channel with charged surface. It is assumed that the length of the channel is finite and the characteristic wavelength is very large compared to the half width of the channel. The flow is assumed to be governed by Navier–Stokes equations augmented with electric body force. A transient two-dimensional flow analysis is presented by employing lubrication theory. Debye–Hückel linearization is adopted to obtain a general solution of Poisson–Boltzmann equation. The flow rate, velocity profile, pressure distribution, and wall shear stress are analyzed as functions of various parameters involved like zeta-potential ratio, Debye–Hückel parameter, etc. It is noted that the fluctuations in pressure and shear stress increase with the increasing zeta-potential ratio when the Helmholtz–Smoluchowski velocity is positive. The streamline pattern and the particle trajectories are analyzed to understand the trapping phenomenon and the retrograde motion. It is observed that the electroosmosis phenomenon drastically modulates the fluid flow in microchannels. Although the asymmetric nature of the wavy channel does not support active particle transport, the applied electric field enhances the particle motion favoring optimal conditions. It is observed that the extreme asymmetry of the wall motility reduces the net flow rate. Further, it is noticed that the asymmetry reduces the amplitudes of the pressure. This model can help toward designing artificial organs based on microfluidic devices which can also be applicable to analyze lumenal flow inside arteries and flow inside intrauterine system, and to implant the embryo at the best location in the uterus for human-assisted reproduction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lin B (ed) (2014) Microfluidics: technologies and applications. Elsevier, Amsterdam Lin B (ed) (2014) Microfluidics: technologies and applications. Elsevier, Amsterdam
2.
Zurück zum Zitat Tovar-Lopez FJ, Rosengarten G, Westein E, Khoshmanesh K, Jackson SP, Mitchell A, Nesbitt WS (2010) A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 10(3):291CrossRef Tovar-Lopez FJ, Rosengarten G, Westein E, Khoshmanesh K, Jackson SP, Mitchell A, Nesbitt WS (2010) A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 10(3):291CrossRef
3.
Zurück zum Zitat Esch MB, King TL, Shuler ML (2011) The role of body-on-a-chip devices in drug and toxicity studies. Ann Rev Biomed Eng 13:55CrossRef Esch MB, King TL, Shuler ML (2011) The role of body-on-a-chip devices in drug and toxicity studies. Ann Rev Biomed Eng 13:55CrossRef
4.
Zurück zum Zitat Koh CG, Kang X, Xie Y, Fei Z, Guan J, Yu B, Lee LJ (2009) Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 6(5):1333CrossRef Koh CG, Kang X, Xie Y, Fei Z, Guan J, Yu B, Lee LJ (2009) Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 6(5):1333CrossRef
5.
Zurück zum Zitat Zhang W, Choi DS, Nguyen YH, Chang J, Qin L (2013) Studying cancer stem cell dynamics on PDMS surfaces for microfluidics device design. Sci Rep 6(5):2332CrossRef Zhang W, Choi DS, Nguyen YH, Chang J, Qin L (2013) Studying cancer stem cell dynamics on PDMS surfaces for microfluidics device design. Sci Rep 6(5):2332CrossRef
6.
Zurück zum Zitat Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760CrossRef Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760CrossRef
7.
Zurück zum Zitat Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662CrossRef Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662CrossRef
8.
Zurück zum Zitat Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165CrossRef Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165CrossRef
9.
Zurück zum Zitat Wei-Xuan L, Guang-Tie L, Wei Y, Qiong Z, Wei W, Xiao-Mian Z, Da-Yu L (2013) Artificial uterus on a microfluidic chip. Chin J Anal Chem 41(4):467CrossRef Wei-Xuan L, Guang-Tie L, Wei Y, Qiong Z, Wei W, Xiao-Mian Z, Da-Yu L (2013) Artificial uterus on a microfluidic chip. Chin J Anal Chem 41(4):467CrossRef
10.
Zurück zum Zitat Chakraborty S (2006) Augmentation of peristaltic microflows through electro-osmotic mechanisms. J Phys D Appl Phys 39(24):5356CrossRef Chakraborty S (2006) Augmentation of peristaltic microflows through electro-osmotic mechanisms. J Phys D Appl Phys 39(24):5356CrossRef
11.
Zurück zum Zitat Cho CC, Chen CL (2013) Characteristics of transient electroosmotic flow in microchannels with complex-wavy surface and periodic time-varying electric field. J Fluids Eng 135(2):021301CrossRef Cho CC, Chen CL (2013) Characteristics of transient electroosmotic flow in microchannels with complex-wavy surface and periodic time-varying electric field. J Fluids Eng 135(2):021301CrossRef
12.
Zurück zum Zitat Ghosh U, Chakraborty S (2015) Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements. Phys Fluids 27(6):062004CrossRef Ghosh U, Chakraborty S (2015) Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements. Phys Fluids 27(6):062004CrossRef
13.
Zurück zum Zitat Si D, Jian Y (2015) Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls. J Phys D Appl Phys 48(8):085501CrossRef Si D, Jian Y (2015) Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls. J Phys D Appl Phys 48(8):085501CrossRef
14.
Zurück zum Zitat Goswami P, Chakraborty J, Bandopadhyay A, Chakraborty S (2016) Electrokinetically modulated peristaltic transport of power-law fluids. Microvasc Res 103:41CrossRef Goswami P, Chakraborty J, Bandopadhyay A, Chakraborty S (2016) Electrokinetically modulated peristaltic transport of power-law fluids. Microvasc Res 103:41CrossRef
15.
Zurück zum Zitat Baier T, Schönfeld F, Hardt S (2011) Analytical approximations to the flow field induced by electroosmosis during isotachophoretic transport through a channel. J Fluid Mech 682:101CrossRefMATH Baier T, Schönfeld F, Hardt S (2011) Analytical approximations to the flow field induced by electroosmosis during isotachophoretic transport through a channel. J Fluid Mech 682:101CrossRefMATH
16.
Zurück zum Zitat Huang C, Hsu H, Lee E (2012) Electrophoretic motion of a charged porous sphere within micro- and nanochannels. Phys Chem Chem Phys 14(2):657CrossRef Huang C, Hsu H, Lee E (2012) Electrophoretic motion of a charged porous sphere within micro- and nanochannels. Phys Chem Chem Phys 14(2):657CrossRef
17.
Zurück zum Zitat Park SY, Russo CJ, Branton D, Stone HA (2006) Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis. J Colloid Interface Sci 297(2):832CrossRef Park SY, Russo CJ, Branton D, Stone HA (2006) Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis. J Colloid Interface Sci 297(2):832CrossRef
18.
Zurück zum Zitat Datta S, Ghosal S, Patankar NA (2004) Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory. Electrophoresis 27:611CrossRef Datta S, Ghosal S, Patankar NA (2004) Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory. Electrophoresis 27:611CrossRef
19.
Zurück zum Zitat Bandopadhyay A, Tripathi D, Chakraborty S (2016) Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys Fluids 28:052002CrossRef Bandopadhyay A, Tripathi D, Chakraborty S (2016) Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys Fluids 28:052002CrossRef
20.
Zurück zum Zitat Tripathi D, Bhushan S, Bég OA (2016) Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf A Physicochem Eng Aspects 506:32CrossRef Tripathi D, Bhushan S, Bég OA (2016) Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf A Physicochem Eng Aspects 506:32CrossRef
21.
Zurück zum Zitat Shit GC, Ranjit NK, Sinha A (2016) Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave: a non-Newtonian model. J Bionic Eng 13(3):436CrossRef Shit GC, Ranjit NK, Sinha A (2016) Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave: a non-Newtonian model. J Bionic Eng 13(3):436CrossRef
22.
Zurück zum Zitat Martinez L, Bautista O, Escandon J, Mendez F (2016) Electroosmotic flow of a Phan–Thien–Tanner fluid in a wavy-wall microchannel. Colloids Surf A Physicochem Eng Aspects 498:7CrossRef Martinez L, Bautista O, Escandon J, Mendez F (2016) Electroosmotic flow of a Phan–Thien–Tanner fluid in a wavy-wall microchannel. Colloids Surf A Physicochem Eng Aspects 498:7CrossRef
23.
Zurück zum Zitat Sinha A, Mondal A, Shit GC, Kundu PK (2016) Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications. Heat Mass Transfer 52(8):1549CrossRef Sinha A, Mondal A, Shit GC, Kundu PK (2016) Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications. Heat Mass Transfer 52(8):1549CrossRef
24.
Zurück zum Zitat Tripathi D, Jhorar R, Bég OA, Kadir A (2017) Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. J Mol Liq 236:358CrossRef Tripathi D, Jhorar R, Bég OA, Kadir A (2017) Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. J Mol Liq 236:358CrossRef
25.
Zurück zum Zitat Tripathi D, Sharma A, Bég OA (2017) Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: Effects of Joule heating and Helmholtz-Smoluchowski velocity. Int J Heat Mass Transf 111:138CrossRef Tripathi D, Sharma A, Bég OA (2017) Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: Effects of Joule heating and Helmholtz-Smoluchowski velocity. Int J Heat Mass Transf 111:138CrossRef
26.
Zurück zum Zitat Tripathi D, Yadav A, Bég OA (2017) Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: mathematical modeling. Math Biosci 283:155MathSciNetCrossRefMATH Tripathi D, Yadav A, Bég OA (2017) Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: mathematical modeling. Math Biosci 283:155MathSciNetCrossRefMATH
27.
Zurück zum Zitat Tripathi D, Yadav A, Bég OA (2017) Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Eur Phys J Plus 132:1CrossRef Tripathi D, Yadav A, Bég OA (2017) Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Eur Phys J Plus 132:1CrossRef
28.
Zurück zum Zitat Bhatti MM, Zeeshan A, Ellahi R, Ijaz N (2017) Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J Mol Liq 230:237CrossRef Bhatti MM, Zeeshan A, Ellahi R, Ijaz N (2017) Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J Mol Liq 230:237CrossRef
29.
Zurück zum Zitat Eytan O, Elad D (1999) Analysis of intra-uterine fluid motion induced by uterine contractions. Bull Math Biol 61(2):221CrossRefMATH Eytan O, Elad D (1999) Analysis of intra-uterine fluid motion induced by uterine contractions. Bull Math Biol 61(2):221CrossRefMATH
30.
Zurück zum Zitat Beebe DJ, Glasgow IK, Wheeler MB, Zeringue H (2001) Microfluidic embryo and/or oocyte handling device and method Beebe DJ, Glasgow IK, Wheeler MB, Zeringue H (2001) Microfluidic embryo and/or oocyte handling device and method
31.
Zurück zum Zitat Raty S, Walters EM, Davis J, Zeringue H, Beebe DJ, Rodriguez-Zas SL, Wheeler MB (2004) Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4(3):186CrossRef Raty S, Walters EM, Davis J, Zeringue H, Beebe DJ, Rodriguez-Zas SL, Wheeler MB (2004) Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4(3):186CrossRef
32.
Zurück zum Zitat Garfield RE, Carp H, Maner WL (2013) Uterine elecrical simulation system and method Garfield RE, Carp H, Maner WL (2013) Uterine elecrical simulation system and method
33.
Zurück zum Zitat Karniadakis GE, Beskok A, Narayan A (2008) Microflows and nanoflows—fundamentals and simulation. New Age International Publisher, New DelhiMATH Karniadakis GE, Beskok A, Narayan A (2008) Microflows and nanoflows—fundamentals and simulation. New Age International Publisher, New DelhiMATH
34.
Zurück zum Zitat Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates. II. Data for polymers. Electrophoresis 25:203CrossRef Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates. II. Data for polymers. Electrophoresis 25:203CrossRef
35.
Zurück zum Zitat Truskey GA, Yuan F, Katz DF (2004) Transport phenomena in biological systems. Pearson Prentice Hall, New Jersey Truskey GA, Yuan F, Katz DF (2004) Transport phenomena in biological systems. Pearson Prentice Hall, New Jersey
36.
Zurück zum Zitat Aranda V, Cortez R, Fauci L (2011) Stokesian peristaltic pumping in a three-dimensional tube with a phase-shifted asymmetry. Phys Fluids 23:081901CrossRefMATH Aranda V, Cortez R, Fauci L (2011) Stokesian peristaltic pumping in a three-dimensional tube with a phase-shifted asymmetry. Phys Fluids 23:081901CrossRefMATH
37.
Zurück zum Zitat Aranda V, Cortez R, Fauci L (2015) A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity. J Biomech 48:1631CrossRef Aranda V, Cortez R, Fauci L (2015) A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity. J Biomech 48:1631CrossRef
38.
Zurück zum Zitat Boyarski S, Gottschalk C, Tanagho E, Zimskind P (1971) Urodynamics: hydrodynamics of the ureter and renal pelvis. Academic Press, New York Boyarski S, Gottschalk C, Tanagho E, Zimskind P (1971) Urodynamics: hydrodynamics of the ureter and renal pelvis. Academic Press, New York
39.
Zurück zum Zitat Li M, Brasseur JG (1993) Non steady peristaltic transport in finite length tubes. J Fluid Mech 248:129CrossRefMATH Li M, Brasseur JG (1993) Non steady peristaltic transport in finite length tubes. J Fluid Mech 248:129CrossRefMATH
40.
Zurück zum Zitat Takabatake S, Ayukawa K, Mori A (1988) Peristaltic pumping in circular cylindrical tubes : a numerical study of fluid transport and its efficiency. J Fluid Mech 193:267CrossRef Takabatake S, Ayukawa K, Mori A (1988) Peristaltic pumping in circular cylindrical tubes : a numerical study of fluid transport and its efficiency. J Fluid Mech 193:267CrossRef
Metadaten
Titel
Time-dependent analysis of electroosmotic fluid flow in a microchannel
verfasst von
V. K. Narla
Dharmendra Tripathi
G. P. Raja Sekhar
Publikationsdatum
07.02.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-09988-4

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.