Skip to main content

2015 | OriginalPaper | Buchkapitel

8. Time Domain Modeling and Simulation from Nanoelectronics to Nanophotonics

verfasst von : Iftikhar Ahmed, Eng Huat Khoo, Erping Li

Erschienen in: Computational Electromagnetics—Retrospective and Outlook

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, time domain approaches for modeling and simulation of devices from nanoelectronics to nanophotonics are presented. To cover this wide range of devices, different equations and models are incorporated into Maxwell equations. For example, Schrödinger equation is incorporated into Maxwell equations to model nanoelectronics and nanoplasmonics devices, Lorentz-Drude (LD) dispersive model is incorporated to simulate passive plasmonic devices; a solid-state model that consists of Pauli Exclusion principle, state-filling effect, and dynamic Fermi-Dirac Thermalization is incorporated to simulate active nanophotonics devices. LD and solid-state models are hybridized for the simulation of active plasmonics devices. Graphics processing unit (GPU) is used to enhance the simulation speed, some of the proposed approaches are implemented on GPU and their examples are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Pierantoni, D. Mencarelli, T. Rozzi, A new 3-D transmission line matrix scheme for the combined Schrödinger Maxwell problem in the electronic electromagnetic characterization of nanodevices. IEEE Trans. Micro. Theo. Tech. 56(3), 654–662 (2008)CrossRef L. Pierantoni, D. Mencarelli, T. Rozzi, A new 3-D transmission line matrix scheme for the combined Schrödinger Maxwell problem in the electronic electromagnetic characterization of nanodevices. IEEE Trans. Micro. Theo. Tech. 56(3), 654–662 (2008)CrossRef
2.
Zurück zum Zitat I. Ahmed, E.P. Li, R. Mittra, A Hybrid Approach for solving coupled Maxwell and Schrödinger equations arising in the simulation of nanodevices. IEEE Anten. Wirel. Propag. Letts 9, 914–917 (2010)CrossRef I. Ahmed, E.P. Li, R. Mittra, A Hybrid Approach for solving coupled Maxwell and Schrödinger equations arising in the simulation of nanodevices. IEEE Anten. Wirel. Propag. Letts 9, 914–917 (2010)CrossRef
3.
Zurück zum Zitat M.P. Anantram, M.S. Lundstrom, D.E. Nikonov, Modeling of Nanoscale. IEEE Proc. 96(9), 1511–1550 (2008)CrossRef M.P. Anantram, M.S. Lundstrom, D.E. Nikonov, Modeling of Nanoscale. IEEE Proc. 96(9), 1511–1550 (2008)CrossRef
4.
Zurück zum Zitat R. Mittra, Computational Electromagnetics: Recent Advances and Engineering Applications (Springer, NewYork, 2013) R. Mittra, Computational Electromagnetics: Recent Advances and Engineering Applications (Springer, NewYork, 2013)
5.
Zurück zum Zitat I. Ahmed, E.H. Khoo, O. Kurniawan, E.P. Li, Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz-Drude dispersive model. J. Opt. Soc. Am. B 28, 352–359 (2011)CrossRef I. Ahmed, E.H. Khoo, O. Kurniawan, E.P. Li, Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz-Drude dispersive model. J. Opt. Soc. Am. B 28, 352–359 (2011)CrossRef
6.
Zurück zum Zitat E.H. Khoo, I. Ahmed, E.P. Li, Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications. Appl. Phys. Lett. 95, 121104 (2009)CrossRef E.H. Khoo, I. Ahmed, E.P. Li, Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications. Appl. Phys. Lett. 95, 121104 (2009)CrossRef
7.
Zurück zum Zitat E.H. Khoo, E.P. Li, I. Ahmed, Y. Huang, S.T. Ho, Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser. IEEE J. Quantum Electron. 46(1), 128 (2010)CrossRef E.H. Khoo, E.P. Li, I. Ahmed, Y. Huang, S.T. Ho, Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser. IEEE J. Quantum Electron. 46(1), 128 (2010)CrossRef
8.
Zurück zum Zitat E.H. Khoo, I. Ahmed, E.P. Li, Manipulating optical forces for trapping in optical vortex using plasmonic bumps. Appl. Phys. Lett. 102(13), 131104 (2013)CrossRef E.H. Khoo, I. Ahmed, E.P. Li, Manipulating optical forces for trapping in optical vortex using plasmonic bumps. Appl. Phys. Lett. 102(13), 131104 (2013)CrossRef
9.
Zurück zum Zitat K.H. Lee, I. Ahmed, R.S.M. Goh, E.H. Khoo, E.P. Li, T.G.G. Hung, Implementation of the FDTD method based on Lorentz-Drude model on GPU for plasmonics applications. Prog. Electromagnet. Res. 116, 441–456 (2011) K.H. Lee, I. Ahmed, R.S.M. Goh, E.H. Khoo, E.P. Li, T.G.G. Hung, Implementation of the FDTD method based on Lorentz-Drude model on GPU for plasmonics applications. Prog. Electromagnet. Res. 116, 441–456 (2011)
10.
Zurück zum Zitat A. Taflove, S. G. Johnson, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (Artech House, Boston, 2013) A. Taflove, S. G. Johnson, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (Artech House, Boston, 2013)
11.
Zurück zum Zitat I. Ahmed, E.P. Li, Simulation of plasmonics nanodevices with coupled maxwell and schrödinger equations using the FDTD method. Adv. Electromagnet. 1(1), 76–83 (2012)CrossRef I. Ahmed, E.P. Li, Simulation of plasmonics nanodevices with coupled maxwell and schrödinger equations using the FDTD method. Adv. Electromagnet. 1(1), 76–83 (2012)CrossRef
12.
Zurück zum Zitat E.H. Khoo, I. Ahmed, R.S.M. Goh, K.H. Lee, E.P. Li, T.G.G. Hung, Efficient Analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method. Opt. Express 21, 5910–5923 (2013)CrossRef E.H. Khoo, I. Ahmed, R.S.M. Goh, K.H. Lee, E.P. Li, T.G.G. Hung, Efficient Analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method. Opt. Express 21, 5910–5923 (2013)CrossRef
13.
Zurück zum Zitat R. F. Harrington, Field Computation by Moment Methods (Wiley-IEEE Press, New Jersey, 1993) R. F. Harrington, Field Computation by Moment Methods (Wiley-IEEE Press, New Jersey, 1993)
14.
Zurück zum Zitat J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley-IEEE Press, New York, 2002) J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley-IEEE Press, New York, 2002)
15.
Zurück zum Zitat A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, Norwood, 2005) A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, Norwood, 2005)
16.
Zurück zum Zitat F. Zheng, Z. Chen, J. Zhang, A finite-difference time-domain method without the Courant stability conditions. IEEE Microw. Guided Wave Lett. 9(11), 441–443 (1999)CrossRef F. Zheng, Z. Chen, J. Zhang, A finite-difference time-domain method without the Courant stability conditions. IEEE Microw. Guided Wave Lett. 9(11), 441–443 (1999)CrossRef
17.
Zurück zum Zitat I. Ahmed, E.K. Chua, E.P. Li, Z. Chen, Development of the three dimensional unconditionally stable LOD-FDTD method. IEEE Trans. Antenna Propag. 56(11), 3596–3600 (2008)CrossRefMathSciNet I. Ahmed, E.K. Chua, E.P. Li, Z. Chen, Development of the three dimensional unconditionally stable LOD-FDTD method. IEEE Trans. Antenna Propag. 56(11), 3596–3600 (2008)CrossRefMathSciNet
18.
Zurück zum Zitat W.J.R. Hoefer, The transmission-line matrix method theory and applications. IEEE Trans. Micro. Theory and Tech 33(10), 882–892 (1985)CrossRef W.J.R. Hoefer, The transmission-line matrix method theory and applications. IEEE Trans. Micro. Theory and Tech 33(10), 882–892 (1985)CrossRef
19.
Zurück zum Zitat I. Ahmed, E.H. Khoo, E.P. Li, Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method. IEEE Trans. Antenna Propag. 58(3), 832–837 (2010)CrossRefMathSciNet I. Ahmed, E.H. Khoo, E.P. Li, Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method. IEEE Trans. Antenna Propag. 58(3), 832–837 (2010)CrossRefMathSciNet
20.
Zurück zum Zitat I. Ahmed, Z. Chen, A hybrid ADI-FDTD subgridding scheme for efficient electromagnetic computation. Inter. J. Num. Mod. Electro. Net. Dev. Fields 17, 237–249 (2004) I. Ahmed, Z. Chen, A hybrid ADI-FDTD subgridding scheme for efficient electromagnetic computation. Inter. J. Num. Mod. Electro. Net. Dev. Fields 17, 237–249 (2004)
21.
Zurück zum Zitat R.K. Chang, A.J. Campillo, Optical Processes in Microcavities, Advanced Series in Applied Physics, 3 (World Scientific, Singapore, 1996) R.K. Chang, A.J. Campillo, Optical Processes in Microcavities, Advanced Series in Applied Physics, 3 (World Scientific, Singapore, 1996)
22.
Zurück zum Zitat K.J. Vahala, Optical Microcavities, Advanced Series in Applied Physics, 5 (World Scientific, Singapore, 2005) K.J. Vahala, Optical Microcavities, Advanced Series in Applied Physics, 5 (World Scientific, Singapore, 2005)
23.
Zurück zum Zitat Y. Huang, S.T. Ho, Computational model of solid state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and fermi-dirac thermalization with application to semiconductor photonics. Opt. Express 14, 3569–3587 (2006)CrossRef Y. Huang, S.T. Ho, Computational model of solid state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and fermi-dirac thermalization with application to semiconductor photonics. Opt. Express 14, 3569–3587 (2006)CrossRef
24.
Zurück zum Zitat B.E. Little, J.S. Foresi, G. Steinmeyer, E.R. Thoen, S.T. Chu, H.A. Haus, E.P Ippen, L.C. Kimerling, W. Greene, Ultra-compact Si-SiO2 microring resonator optical channel dropping filter. IEEE Photonics Tech. Lett. 10, 549–551 (1998) B.E. Little, J.S. Foresi, G. Steinmeyer, E.R. Thoen, S.T. Chu, H.A. Haus, E.P Ippen, L.C. Kimerling, W. Greene, Ultra-compact Si-SiO2 microring resonator optical channel dropping filter. IEEE Photonics Tech. Lett. 10, 549–551 (1998)
25.
Zurück zum Zitat E.D. Palik, Hankbook of Optical Constant of Solids (Academic, Orlando, 1985) E.D. Palik, Hankbook of Optical Constant of Solids (Academic, Orlando, 1985)
26.
Zurück zum Zitat A. Vial, A.S. Grimault, D. Macias, D. Barchiesi, M.D. Chapelle, Improved analytical fit of gold dispersion application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71(8), 085416 (2005)CrossRef A. Vial, A.S. Grimault, D. Macias, D. Barchiesi, M.D. Chapelle, Improved analytical fit of gold dispersion application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71(8), 085416 (2005)CrossRef
27.
Zurück zum Zitat D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Apl. Optics. 37, 5271–5283 (1998)CrossRef D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Apl. Optics. 37, 5271–5283 (1998)CrossRef
28.
Zurück zum Zitat R. Perahia, T.P.M. Alegre, A.H. Safavi-Naeini, O. Painter, Surface-plasmon mode hybridization in subwavelength microdisk lasers. Appl. Phys. Lett. 95(20), 201114-1–201114-3, (2009) R. Perahia, T.P.M. Alegre, A.H. Safavi-Naeini, O. Painter, Surface-plasmon mode hybridization in subwavelength microdisk lasers. Appl. Phys. Lett. 95(20), 201114-1–201114-3, (2009)
29.
Zurück zum Zitat M.R. Zunoubi, J. Payne, W.P. Roach, CUDA implementation of -FDTD solution of Maxwell’s equations in dispersive media. IEEE Antennas Wirel. Propag. Lett. 9, 756–759, (2010) M.R. Zunoubi, J. Payne, W.P. Roach, CUDA implementation of -FDTD solution of Maxwell’s equations in dispersive media. IEEE Antennas Wirel. Propag. Lett. 9, 756–759, (2010)
30.
Zurück zum Zitat L. Savioja, Real-time 3D finite-difference time-domain simulation of low and mid frequency room acoustics, Proceedings of the 13th International Conference on Digital Audio Effects (DAFx-10), Graz, Austria, 6–10 Sept 2010 L. Savioja, Real-time 3D finite-difference time-domain simulation of low and mid frequency room acoustics, Proceedings of the 13th International Conference on Digital Audio Effects (DAFx-10), Graz, Austria, 6–10 Sept 2010
31.
Zurück zum Zitat S. Chen, S. Dong, W. Xian-liang, GPU-BASED accelerated FDTD simulations for double negative (DNG) materials applications, International conference on Microwave and Millimeter Wave Technology, ICMMT, (2010), pp. 839–841 S. Chen, S. Dong, W. Xian-liang, GPU-BASED accelerated FDTD simulations for double negative (DNG) materials applications, International conference on Microwave and Millimeter Wave Technology, ICMMT, (2010), pp. 839–841
32.
Zurück zum Zitat R. Shams, P. Sadeghi, On optimization of finite -difference time-domain (FDTD) computation on heterogeneous and GPU clusters. J. Parallel Distrib. Comput. 71, 584–593 (2010) R. Shams, P. Sadeghi, On optimization of finite -difference time-domain (FDTD) computation on heterogeneous and GPU clusters. J. Parallel Distrib. Comput. 71, 584–593 (2010)
33.
Zurück zum Zitat S.H. Zainud-Deen, E. Hassan, M.S. Ibrahim, K.H. Awadalla, A.Z. Botros, Electromagnetic scattering using GPU based finite difference frequency domain method. Prog. Electromagnet. Res. B 16, 351–369 (2009)CrossRef S.H. Zainud-Deen, E. Hassan, M.S. Ibrahim, K.H. Awadalla, A.Z. Botros, Electromagnetic scattering using GPU based finite difference frequency domain method. Prog. Electromagnet. Res. B 16, 351–369 (2009)CrossRef
Metadaten
Titel
Time Domain Modeling and Simulation from Nanoelectronics to Nanophotonics
verfasst von
Iftikhar Ahmed
Eng Huat Khoo
Erping Li
Copyright-Jahr
2015
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-095-7_8

Neuer Inhalt