Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2014

01.08.2014 | RESEARCH PAPER

Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus

verfasst von: Wenjiong Chen, Shutian Liu

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Damping performance of a passive constrained layer damping (PCLD) structure mainly depends on the geometric layout and physical properties of the viscoelastic damping material. Properties such as the shear modulus of the damping material need to be tailored for improving the damping of the structures. This paper presents a topology optimization method for designing the microstructures in 2D, i.e., the structure of the periodic unit cell (PUC), of cellular viscoelastic materials with a prescribed shear modulus. The effective behavior of viscoelastic materials is derived through the use of a finite element based homogenization method. Only isotropic matrix material was considered and under such assumption it is found that the effective loss factor of viscoelastic material is independent of the geometrical configuration of the PUC. Based upon the idea of a Solid Isotropic Material with Penalization (SIMP) method of topology optimization, the relative material densities of the elements of the PUC are considered as the design variables. The topology optimization problem of viscoelastic cellular material with a prescribed property and with constraints on the isotropy and volume fraction is established. The optimization problem is solved using the sequential linear programming (SLP) method. Several examples of the design optimization of viscoelastic cellular materials are presented to demonstrate the validity of the method. The effectiveness of the design method is illustrated by comparing a solid and an optimized cellular viscoelastic material as applied to a cantilever beam with the passive constrained layer damping treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Ajmi M (2004) Homogenization and topology optimization of constrained layer damping treatments. Ph.D. dissertation, University of Maryland Al-Ajmi M (2004) Homogenization and topology optimization of constrained layer damping treatments. Ph.D. dissertation, University of Maryland
Zurück zum Zitat Alvelid M (2008) Optimal position and shape of applied damping material. J Sound Vib 310:947–965CrossRef Alvelid M (2008) Optimal position and shape of applied damping material. J Sound Vib 310:947–965CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRef Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, New YorkCrossRef Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, New YorkCrossRef
Zurück zum Zitat Christensen RM (2010) Theory of viscoelasticity. Dover, New York Christensen RM (2010) Theory of viscoelasticity. Dover, New York
Zurück zum Zitat Dimitrovová Z (2005) A newQ8 methodology to establish upper bounds on open-cell foam homogenized moduli. Struct Multidiscip Optim 29:257–271CrossRef Dimitrovová Z (2005) A newQ8 methodology to establish upper bounds on open-cell foam homogenized moduli. Struct Multidiscip Optim 29:257–271CrossRef
Zurück zum Zitat Hassani B, Hinton E (1998a) A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations. Comput Struct 69:719–738CrossRef Hassani B, Hinton E (1998a) A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations. Comput Struct 69:719–738CrossRef
Zurück zum Zitat Hassani B, Hinton E (1998b) A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput Struct 69:707–717CrossRefMATH Hassani B, Hinton E (1998b) A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput Struct 69:707–717CrossRefMATH
Zurück zum Zitat Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comp Mater Sci 50:1861–1870CrossRef Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comp Mater Sci 50:1861–1870CrossRef
Zurück zum Zitat Huang X, Xie YM, Jia B, Li Q, Zhou SW (2012) Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct Multidiscip Optim 46:385–398CrossRefMATHMathSciNet Huang X, Xie YM, Jia B, Li Q, Zhou SW (2012) Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct Multidiscip Optim 46:385–398CrossRefMATHMathSciNet
Zurück zum Zitat Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim 46:51–67CrossRefMATHMathSciNet Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim 46:51–67CrossRefMATHMathSciNet
Zurück zum Zitat Kerwin EM (1959) Damping of flexural waves by a constrained viscoelastic layer. J Acoust Soc Am 31:952–962CrossRef Kerwin EM (1959) Damping of flexural waves by a constrained viscoelastic layer. J Acoust Soc Am 31:952–962CrossRef
Zurück zum Zitat Kim SY (2011) Topology design optimization for vibration reduction: reducible design variable method. Ph.D. dissertation, Queen’s University Kim SY (2011) Topology design optimization for vibration reduction: reducible design variable method. Ph.D. dissertation, Queen’s University
Zurück zum Zitat Kim SY, Mechefske CK, Kim IY (2013) Optimal damping layout in a shell structure using topology optimization. J Sound Vib 332:2873–2883CrossRef Kim SY, Mechefske CK, Kim IY (2013) Optimal damping layout in a shell structure using topology optimization. J Sound Vib 332:2873–2883CrossRef
Zurück zum Zitat Lall AK, Asnani NT, Nakra BC (1987) Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer. J Vib Acoust Stress Reliab Des 109(3):241–247CrossRef Lall AK, Asnani NT, Nakra BC (1987) Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer. J Vib Acoust Stress Reliab Des 109(3):241–247CrossRef
Zurück zum Zitat Ling Z, Ronglu X, Yi W, El-Sabbagh A (2011) Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach. Shock Vib 18:221–244CrossRef Ling Z, Ronglu X, Yi W, El-Sabbagh A (2011) Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach. Shock Vib 18:221–244CrossRef
Zurück zum Zitat Mead DJ, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J Sound Vib 10:163–175CrossRefMATH Mead DJ, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J Sound Vib 10:163–175CrossRefMATH
Zurück zum Zitat Moreira R, Rodrigues JD (2006) Partial constrained viscoelastic damping treatment of structures: a modal strain energy approach. Int J Struct Stab Dyn 6:397–411CrossRef Moreira R, Rodrigues JD (2006) Partial constrained viscoelastic damping treatment of structures: a modal strain energy approach. Int J Struct Stab Dyn 6:397–411CrossRef
Zurück zum Zitat Nakra BC (1998) Vibration control in machines and structures using viscoelastic damping. J Sound Vib 211:449–465CrossRef Nakra BC (1998) Vibration control in machines and structures using viscoelastic damping. J Sound Vib 211:449–465CrossRef
Zurück zum Zitat Neves MM, Rodrigues H, Guedes JM (2000) Optimal design of periodic linear elastic microstructures. Comput Struct 76:421–429CrossRef Neves MM, Rodrigues H, Guedes JM (2000) Optimal design of periodic linear elastic microstructures. Comput Struct 76:421–429CrossRef
Zurück zum Zitat Nomura T, Nishiwaki S, Sato K, Hirayama K (2009) Topology optimization for the design of periodic microstructures composed of electromagnetic materials. Finite Elem Anal Des 45:210–226CrossRefMathSciNet Nomura T, Nishiwaki S, Sato K, Hirayama K (2009) Topology optimization for the design of periodic microstructures composed of electromagnetic materials. Finite Elem Anal Des 45:210–226CrossRefMathSciNet
Zurück zum Zitat Radman A, Huang X, Xie YM (2013) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optimiz 45:1331–1348CrossRefMathSciNet Radman A, Huang X, Xie YM (2013) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optimiz 45:1331–1348CrossRefMathSciNet
Zurück zum Zitat Rao MD, Shulin HE (1993) Dynamic analysis and design of laminated composite beams with multiple damping layers. Aiaa J 31:736–745CrossRef Rao MD, Shulin HE (1993) Dynamic analysis and design of laminated composite beams with multiple damping layers. Aiaa J 31:736–745CrossRef
Zurück zum Zitat Ro J, Baz A (2002) Optimum placement and control of active constrained layer damping using modal strain energy approach. J Vib Control 8:861–876CrossRefMATH Ro J, Baz A (2002) Optimum placement and control of active constrained layer damping using modal strain energy approach. J Vib Control 8:861–876CrossRefMATH
Zurück zum Zitat Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329CrossRefMATHMathSciNet Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329CrossRefMATHMathSciNet
Zurück zum Zitat Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368CrossRef Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368CrossRef
Zurück zum Zitat Ungar EE, Kerwin EM Jr (1962) Loss factors of viscoelastic systems in terms of energy concepts. J Acoust Soc Am 34:954–957CrossRefMathSciNet Ungar EE, Kerwin EM Jr (1962) Loss factors of viscoelastic systems in terms of energy concepts. J Acoust Soc Am 34:954–957CrossRefMathSciNet
Zurück zum Zitat Yi Y, Park S, Youn S (2000) Design of microstructures of viscoelastic composites for optimal damping characteristics. Int J Solids Struct 37:4791–4810CrossRefMATH Yi Y, Park S, Youn S (2000) Design of microstructures of viscoelastic composites for optimal damping characteristics. Int J Solids Struct 37:4791–4810CrossRefMATH
Zurück zum Zitat Zheng H, Cai C, Pau G, Liu GR (2005) Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. J Sound Vib 279:739–756CrossRef Zheng H, Cai C, Pau G, Liu GR (2005) Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. J Sound Vib 279:739–756CrossRef
Metadaten
Titel
Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus
verfasst von
Wenjiong Chen
Shutian Liu
Publikationsdatum
01.08.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2014
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1049-3

Weitere Artikel der Ausgabe 2/2014

Structural and Multidisciplinary Optimization 2/2014 Zur Ausgabe

ACKNOWLEDGEMENT TO THE REVIEWERS

Thanks to our reviewers

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.