Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 5/2020

24.07.2020 | Research Paper

Topology optimization of structural systems based on a nonlinear beam finite element model

verfasst von: Navid Changizi, Gordon P. Warn

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A method for the topology optimization of structures composed of nonlinear beam elements based on a hysteretic finite element modeling approach is presented. In the context of the optimal design of structures composed of truss or beam elements, studies reported in the literature have mostly considered linear elastic material behavior. However, certain applications require consideration of the nonlinear response of the structural system to the given external forces. Particular to the methodology suggested in this paper is a hysteretic beam finite element model in which the inelastic deformations are governed by principles of mechanics in conjunction with first-order nonlinear ordinary differential equations. The nonlinear ordinary differential equations determine the onset of inelastic deformations and the approximation of the signum function in the differential equation with the hyperbolic tangent function permits the derivation of analytical sensitivities. The objective of the optimization problem is to minimize the volume of the system such that a system-level displacement satisfies a specified constraint value. This design problem is analogous to that of seismic design where inelastic deformations are permitted, yet sufficient stiffness is required to limit the overall displacement of the system to a specified threshold. The utility of the method is demonstrated through numerical examples for the design of two structural frames and a comparison with the solution from the topology optimization assuming linear elastic material behavior. The comparisons show that the nonlinear design is either comprised of a lower volume for a given level of performance, or offers better performance for a given volume in comparison with optimized linear design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Achtziger W, Bendsøe MP (1995) Design for maximal flexibility as a simple computational model of damage. Struct Optim 10(3–4):258–268CrossRef Achtziger W, Bendsøe MP (1995) Design for maximal flexibility as a simple computational model of damage. Struct Optim 10(3–4):258–268CrossRef
Zurück zum Zitat Alberdi R, Khandelwal K (2017) Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints. Finite Elem Anal Des 133:42–61MathSciNetCrossRef Alberdi R, Khandelwal K (2017) Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints. Finite Elem Anal Des 133:42–61MathSciNetCrossRef
Zurück zum Zitat Alberdi R, Zhang G, Li L, Khandelwal K (2018) A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization. Int J Numer Methods Eng, vol 115 Alberdi R, Zhang G, Li L, Khandelwal K (2018) A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization. Int J Numer Methods Eng, vol 115
Zurück zum Zitat American Institute of Steel Construction (2015) Steel construction manual shapes database American Institute of Steel Construction (2015) Steel construction manual shapes database
Zurück zum Zitat Amir M, Papakonstantinou K, Warn G (2019) A consistent timoshenko hysteretic beam finite element model. Int J Non-Linear Mech, vol 119 Amir M, Papakonstantinou K, Warn G (2019) A consistent timoshenko hysteretic beam finite element model. Int J Non-Linear Mech, vol 119
Zurück zum Zitat Asadpoure A, Tootkaboni M, Guest J K (2011) Robust topology optimization of structures with uncertainties in stiffness–application to truss structures. Comput Struct 89(11):1131–1141CrossRef Asadpoure A, Tootkaboni M, Guest J K (2011) Robust topology optimization of structures with uncertainties in stiffness–application to truss structures. Comput Struct 89(11):1131–1141CrossRef
Zurück zum Zitat ASCE (2017) Minimum design loads for buildings and other structures. American Society of Civil Engineers, Reston, asce/sei 7–16 edition ASCE (2017) Minimum design loads for buildings and other structures. American Society of Civil Engineers, Reston, asce/sei 7–16 edition
Zurück zum Zitat Baber T T, Noori M N (1985) Random vibration of degrading, pinching systems. J Eng Mech 111(8):1010–1026CrossRef Baber T T, Noori M N (1985) Random vibration of degrading, pinching systems. J Eng Mech 111(8):1010–1026CrossRef
Zurück zum Zitat Baber T T, Wen Y-K (1981) Random vibration hysteretic, degrading systems. J Eng Mech Div 107(6):1069–1087 Baber T T, Wen Y-K (1981) Random vibration hysteretic, degrading systems. J Eng Mech Div 107(6):1069–1087
Zurück zum Zitat Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe
Zurück zum Zitat Bendsoe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, BerlinCrossRef Bendsoe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, BerlinCrossRef
Zurück zum Zitat Boese K D, Kahng A B, Muddu S (1994) A new adaptive multi-start technique for combinatorial global optimizations. Oper Res Lett 16(2):101–114MathSciNetCrossRef Boese K D, Kahng A B, Muddu S (1994) A new adaptive multi-start technique for combinatorial global optimizations. Oper Res Lett 16(2):101–114MathSciNetCrossRef
Zurück zum Zitat Bouc R (1967) Forced vibration of mechanical systems with hysteresis. In: Proceedings of the fourth conference on non-linear oscillation. Prague, p 315 Bouc R (1967) Forced vibration of mechanical systems with hysteresis. In: Proceedings of the fourth conference on non-linear oscillation. Prague, p 315
Zurück zum Zitat Casciati F (1989) Stochastic dynamics of hysteretic media. Struct Saf 6(2–4):259–269CrossRef Casciati F (1989) Stochastic dynamics of hysteretic media. Struct Saf 6(2–4):259–269CrossRef
Zurück zum Zitat Changizi N, Jalalpour M (2017a) Robust topology optimization of frame structures under geometric or material properties uncertainties. Struct Multidiscip Optim 56(4):791–807 Changizi N, Jalalpour M (2017a) Robust topology optimization of frame structures under geometric or material properties uncertainties. Struct Multidiscip Optim 56(4):791–807
Zurück zum Zitat Changizi N, Jalalpour M (2017b) Stress-based topology optimization of steel-frame structures using members with standard cross sections: gradient-based approach. J Struct Eng 143(8):04017078 Changizi N, Jalalpour M (2017b) Stress-based topology optimization of steel-frame structures using members with standard cross sections: gradient-based approach. J Struct Eng 143(8):04017078
Zurück zum Zitat Deaton J D, Grandhi R V (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef Deaton J D, Grandhi R V (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef
Zurück zum Zitat Erlicher S, Point N (2004) Thermodynamic admissibility of Bouc–Wen type hysteresis models. C R Mec 332(1):51–57CrossRef Erlicher S, Point N (2004) Thermodynamic admissibility of Bouc–Wen type hysteresis models. C R Mec 332(1):51–57CrossRef
Zurück zum Zitat Foliente G C (1995) Hysteresis modeling of wood joints and structural systems. J Struct Eng 121 (6):1013–1022CrossRef Foliente G C (1995) Hysteresis modeling of wood joints and structural systems. J Struct Eng 121 (6):1013–1022CrossRef
Zurück zum Zitat Gömöry F, Vojenčiak M, Pardo E, Šouc J (2009) Magnetic flux penetration and AC loss in a composite superconducting wire with ferromagnetic parts. Supercond Sci Technol 22(3):034017CrossRef Gömöry F, Vojenčiak M, Pardo E, Šouc J (2009) Magnetic flux penetration and AC loss in a composite superconducting wire with ferromagnetic parts. Supercond Sci Technol 22(3):034017CrossRef
Zurück zum Zitat James K A, Waisman H (2014) Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng 268:614–631MathSciNetCrossRef James K A, Waisman H (2014) Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng 268:614–631MathSciNetCrossRef
Zurück zum Zitat James K A, Waisman H (2015) Topology optimization of structures under variable loading using a damage superposition approach. Int J Numer Methods Eng 101(5):375–406MathSciNetCrossRef James K A, Waisman H (2015) Topology optimization of structures under variable loading using a damage superposition approach. Int J Numer Methods Eng 101(5):375–406MathSciNetCrossRef
Zurück zum Zitat Kim T, Rook T, Singh R (2003) Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity. J Sound Vib 263(3):665–678MathSciNetCrossRef Kim T, Rook T, Singh R (2003) Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity. J Sound Vib 263(3):665–678MathSciNetCrossRef
Zurück zum Zitat Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48MathSciNetCrossRef Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48MathSciNetCrossRef
Zurück zum Zitat Kleiber M (1993) Shape and non-shape structural sensitivity analysis for problems with any material and kinematic non-linearity. Comput Methods Appl Mech Eng 108(1–2):73–97CrossRef Kleiber M (1993) Shape and non-shape structural sensitivity analysis for problems with any material and kinematic non-linearity. Comput Methods Appl Mech Eng 108(1–2):73–97CrossRef
Zurück zum Zitat Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620 Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620
Zurück zum Zitat Li L, Khandelwal K (2017) Topology optimization of geometrically nonlinear trusses with spurious eigenmodes control. Eng Struct 131:324–344CrossRef Li L, Khandelwal K (2017) Topology optimization of geometrically nonlinear trusses with spurious eigenmodes control. Eng Struct 131:324–344CrossRef
Zurück zum Zitat Li L, Zhang G, Khandelwal K (2017) Design of energy dissipating elastoplastic structures under cyclic loads using topology optimization. Struct Multidiscip Optim 56(2):391–412MathSciNetCrossRef Li L, Zhang G, Khandelwal K (2017) Design of energy dissipating elastoplastic structures under cyclic loads using topology optimization. Struct Multidiscip Optim 56(2):391–412MathSciNetCrossRef
Zurück zum Zitat Li L, Zhang G, Khandelwal K (2018) Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model. Struct Multidiscip Optim, vol 58 Li L, Zhang G, Khandelwal K (2018) Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model. Struct Multidiscip Optim, vol 58
Zurück zum Zitat Luo Y, Wang M Y, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441MathSciNetCrossRef Luo Y, Wang M Y, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441MathSciNetCrossRef
Zurück zum Zitat Martí R, Lozano JA, Mendiburu A, Hernando L (2016) Multi-start methods. In: Handbook of heuristics, pp 1–21 Martí R, Lozano JA, Mendiburu A, Hernando L (2016) Multi-start methods. In: Handbook of heuristics, pp 1–21
Zurück zum Zitat Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRef Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRef
Zurück zum Zitat Miche U (1904) The limits of economy of material in frame structure. Philos Mag 8:589–597CrossRef Miche U (1904) The limits of economy of material in frame structure. Philos Mag 8:589–597CrossRef
Zurück zum Zitat Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326MathSciNetCrossRef Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326MathSciNetCrossRef
Zurück zum Zitat Nakshatrala P B, Tortorelli D, Nakshatrala K (2013) Nonlinear structural design using multiscale topology optimization. Part i: static formulation. Comput Methods Appl Mech Eng 261:167–176MathSciNetCrossRef Nakshatrala P B, Tortorelli D, Nakshatrala K (2013) Nonlinear structural design using multiscale topology optimization. Part i: static formulation. Comput Methods Appl Mech Eng 261:167–176MathSciNetCrossRef
Zurück zum Zitat Pedersen C B (2003) Topology optimization design of crushed 2d-frames for desired energy absorption history. Struct Multidiscip Optim 25(5–6):368–382CrossRef Pedersen C B (2003) Topology optimization design of crushed 2d-frames for desired energy absorption history. Struct Multidiscip Optim 25(5–6):368–382CrossRef
Zurück zum Zitat Pedersen C B (2004) Crashworthiness design of transient frame structures using topology optimization. Comput Methods Appl Mech Eng 193(6–8):653–678CrossRef Pedersen C B (2004) Crashworthiness design of transient frame structures using topology optimization. Comput Methods Appl Mech Eng 193(6–8):653–678CrossRef
Zurück zum Zitat Ramos A S, Paulino G H (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51(2):287–304MathSciNetCrossRef Ramos A S, Paulino G H (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51(2):287–304MathSciNetCrossRef
Zurück zum Zitat Rozvany GI, Lewinski T (2014) Topology optimization in structural and continuum mechanics. Springer, New YorkCrossRef Rozvany GI, Lewinski T (2014) Topology optimization in structural and continuum mechanics. Springer, New YorkCrossRef
Zurück zum Zitat Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15–17):2135–2155CrossRef Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15–17):2135–2155CrossRef
Zurück zum Zitat Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Technical University of Denmark, Denmark Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Technical University of Denmark, Denmark
Zurück zum Zitat Sivaselvan M V, Reinhorn A M (2000) Hysteretic models for deteriorating inelastic structures. J Eng Mech 126(6):633–640CrossRef Sivaselvan M V, Reinhorn A M (2000) Hysteretic models for deteriorating inelastic structures. J Eng Mech 126(6):633–640CrossRef
Zurück zum Zitat Swan C C, Kosaka I (1997) Voigt-reuss topology optimization for structures with nonlinear material behaviors. Int J Numer Methods Eng 40(20):3785–3814MathSciNetCrossRef Swan C C, Kosaka I (1997) Voigt-reuss topology optimization for structures with nonlinear material behaviors. Int J Numer Methods Eng 40(20):3785–3814MathSciNetCrossRef
Zurück zum Zitat The MathWorks Inc. (2018) MATLAB- Optimization toolbox, Version 8.1. The MathWorks Inc., Natick The MathWorks Inc. (2018) MATLAB- Optimization toolbox, Version 8.1. The MathWorks Inc., Natick
Zurück zum Zitat Tortorelli D A (1992) Sensitivity analysis for non-linear constrained elastostatic systems. Int J Numer Methods Eng 33(8):1643–1660CrossRef Tortorelli D A (1992) Sensitivity analysis for non-linear constrained elastostatic systems. Int J Numer Methods Eng 33(8):1643–1660CrossRef
Zurück zum Zitat Triantafyllou S P, Koumousis V K (2011) An inelastic timoshenko beam element with axial–shear–flexural interaction. Comput Mech 48(6):713–727MathSciNetCrossRef Triantafyllou S P, Koumousis V K (2011) An inelastic timoshenko beam element with axial–shear–flexural interaction. Comput Mech 48(6):713–727MathSciNetCrossRef
Zurück zum Zitat Triantafyllou S, Koumousis V (2012) Small and large displacement dynamic analysis of frame structures based on hysteretic beam elements. J Eng Mech 138(1):36–49CrossRef Triantafyllou S, Koumousis V (2012) Small and large displacement dynamic analysis of frame structures based on hysteretic beam elements. J Eng Mech 138(1):36–49CrossRef
Zurück zum Zitat Tsay J, Arora J (1990) Nonlinear structural design sensivitity analysis for path dependent problems. Part 1: general theory. Comput Methods Appl Mech Eng 81(2):183–208CrossRef Tsay J, Arora J (1990) Nonlinear structural design sensivitity analysis for path dependent problems. Part 1: general theory. Comput Methods Appl Mech Eng 81(2):183–208CrossRef
Zurück zum Zitat Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidiscip Optim 54(4):783– 793MathSciNetCrossRef Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidiscip Optim 54(4):783– 793MathSciNetCrossRef
Zurück zum Zitat Yuge K, Kikuchi N (1995) Optimization of a frame structure subjected to a plastic deformation. Struct Optim 10(3–4):197–208CrossRef Yuge K, Kikuchi N (1995) Optimization of a frame structure subjected to a plastic deformation. Struct Optim 10(3–4):197–208CrossRef
Zurück zum Zitat Yuge K, Iwai N, Kikuchi N (1999) Optimization of 2-d structures subjected to nonlinear deformations using the homogenization method. Struct Optim 17(4):286–299CrossRef Yuge K, Iwai N, Kikuchi N (1999) Optimization of 2-d structures subjected to nonlinear deformations using the homogenization method. Struct Optim 17(4):286–299CrossRef
Zurück zum Zitat Zhang G, Li L, Khandelwal K (2017a) Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements. Struct Multidiscip Optim 55(6):1965–1988 Zhang G, Li L, Khandelwal K (2017a) Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements. Struct Multidiscip Optim 55(6):1965–1988
Zurück zum Zitat Zhang X, Ramos A S, Paulino G H (2017b) Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme. Struct Multidiscip Optim 55(6):2045– 2072 Zhang X, Ramos A S, Paulino G H (2017b) Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme. Struct Multidiscip Optim 55(6):2045– 2072
Zurück zum Zitat Zhang X S, Paulino G H, Ramos A S (2018) Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim 57(1):161–182MathSciNetCrossRef Zhang X S, Paulino G H, Ramos A S (2018) Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim 57(1):161–182MathSciNetCrossRef
Metadaten
Titel
Topology optimization of structural systems based on a nonlinear beam finite element model
verfasst von
Navid Changizi
Gordon P. Warn
Publikationsdatum
24.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 5/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02636-x

Weitere Artikel der Ausgabe 5/2020

Structural and Multidisciplinary Optimization 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.