Skip to main content
Erschienen in: International Journal of Computer Vision 9/2023

03.06.2023 | S.I. : Traditional Computer Vision in the Age of Deep Learning

Towards Fine-Grained Optimal 3D Face Dense Registration: An Iterative Dividing and Diffusing Method

verfasst von: Zhenfeng Fan, Silong Peng, Shihong Xia

Erschienen in: International Journal of Computer Vision | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dense vertex-to-vertex correspondence (i.e. registration) between 3D faces is a fundamental and challenging issue for 3D &2D face analysis. While the sparse landmarks are definite with anatomically ground-truth correspondence, the dense vertex correspondences on most facial regions are unknown. In this view, the current methods commonly result in reasonable but diverse solutions, which deviate from the optimum to the dense registration problem. In this paper, we revisit dense registration by a dimension-degraded problem, i.e. proportional segmentation of a line, and employ an iterative dividing and diffusing method to reach an optimum solution that is robust to different initializations. We formulate a local registration problem for dividing and a linear least-square problem for diffusing, with constraints on fixed features on a 3D facial surface. We further propose a multi-resolution algorithm to accelerate the computational process. The proposed method is linked to a novel local scaling metric, where we illustrate the physical significance as smooth adaptions for local cells of 3D facial shapes. Extensive experiments on public datasets demonstrate the effectiveness of the proposed method in various aspects. Generally, the proposed method leads to not only significantly better representations of 3D facial data, but also coherent local deformations with elegant grid architecture for fine-grained registrations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
3
The core code for the iterative dividing and diffusing method will be publicly available at https://​github.​com/​NaughtyZZ/​3D_​face_​dense_​registration.
 
Literatur
Zurück zum Zitat Allen, B., Curless, B., & Popović, Z. (2003). The space of human body shapes: Reconstruction and parameterization from range scans. ACM Transactions on Graphics, 22(3), 587–594.CrossRef Allen, B., Curless, B., & Popović, Z. (2003). The space of human body shapes: Reconstruction and parameterization from range scans. ACM Transactions on Graphics, 22(3), 587–594.CrossRef
Zurück zum Zitat Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In IEEE conference on computer vision and pattern recognition (pp. 1–8). Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In IEEE conference on computer vision and pattern recognition (pp. 1–8).
Zurück zum Zitat Bahri, M., O’Sullivan, E., Gong, S., Liu, F., Liu, X., Bronstein, M. M., & Zafeiriou, S. (2021). Shape my face: Registering 3D face scans by surface-to-surface translation. International Journal of Computer Vision, 129(9), 2680–2713.CrossRef Bahri, M., O’Sullivan, E., Gong, S., Liu, F., Liu, X., Bronstein, M. M., & Zafeiriou, S. (2021). Shape my face: Registering 3D face scans by surface-to-surface translation. International Journal of Computer Vision, 129(9), 2680–2713.CrossRef
Zurück zum Zitat Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509–517.CrossRefMATH Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509–517.CrossRefMATH
Zurück zum Zitat Bergen, Gvd. (1997). Efficient collision detection of complex deformable models using AABB trees. Journal of Graphics Tools, 2(4), 1–13.CrossRefMATH Bergen, Gvd. (1997). Efficient collision detection of complex deformable models using AABB trees. Journal of Graphics Tools, 2(4), 1–13.CrossRefMATH
Zurück zum Zitat Besl, P., & McKay, H. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.CrossRef Besl, P., & McKay, H. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.CrossRef
Zurück zum Zitat Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In ACM annual conference on computer graphics and interactive techniques (pp. 187–194). Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In ACM annual conference on computer graphics and interactive techniques (pp. 187–194).
Zurück zum Zitat Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3D faces. In IEEE international conference on computer vision (pp. 3604–3612). Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3D faces. In IEEE international conference on computer vision (pp. 3604–3612).
Zurück zum Zitat Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. (2018). Large scale 3D morphable models. International Journal of Computer Vision, 126(2), 233–254.MathSciNetCrossRef Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. (2018). Large scale 3D morphable models. International Journal of Computer Vision, 126(2), 233–254.MathSciNetCrossRef
Zurück zum Zitat Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2005). Three-dimensional face recognition. International Journal of Computer Vision, 64(1), 5–30.CrossRef Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2005). Three-dimensional face recognition. International Journal of Computer Vision, 64(1), 5–30.CrossRef
Zurück zum Zitat Brown, B. J., & Rusinkiewicz, S. M. (2007). Global non-rigid alignment of 3-D scans. ACM Transactions on Graphics, 26(3), 1276404.CrossRef Brown, B. J., & Rusinkiewicz, S. M. (2007). Global non-rigid alignment of 3-D scans. ACM Transactions on Graphics, 26(3), 1276404.CrossRef
Zurück zum Zitat Bulat, A., & Tzimiropoulos, G. (2017). How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In IEEE international conference on computer vision (pp. 1021–1030). Bulat, A., & Tzimiropoulos, G. (2017). How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In IEEE international conference on computer vision (pp. 1021–1030).
Zurück zum Zitat Cao, C., Weng, Y., Zhou, S., Tong, Y., & Zhou, K. (2013). FaceWarehouse: A 3D facial expression database for visual computing. IEEE Transactions on Visualization and Computer Graphics, 20(3), 413–425. Cao, C., Weng, Y., Zhou, S., Tong, Y., & Zhou, K. (2013). FaceWarehouse: A 3D facial expression database for visual computing. IEEE Transactions on Visualization and Computer Graphics, 20(3), 413–425.
Zurück zum Zitat Cheng, S., Marras, I., Zafeiriou, S., & Pantic, M. (2015). Active nonrigid ICP algorithm. In IEEE international conference and workshops on automatic face and gesture recognition (Vol. 1, pp. 1–8). Cheng, S., Marras, I., Zafeiriou, S., & Pantic, M. (2015). Active nonrigid ICP algorithm. In IEEE international conference and workshops on automatic face and gesture recognition (Vol. 1, pp. 1–8).
Zurück zum Zitat Chen, Y., & Medioni, G. (1992). Object modelling by registration of multiple range images. Image and Vision Computing, 10(3), 145–155.CrossRef Chen, Y., & Medioni, G. (1992). Object modelling by registration of multiple range images. Image and Vision Computing, 10(3), 145–155.CrossRef
Zurück zum Zitat Corneanu, C. A., Simón, M. O., Cohn, J. F., & Guerrero, S. E. (2016). Survey on RGB, 3D, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(8), 1548–1568.CrossRef Corneanu, C. A., Simón, M. O., Cohn, J. F., & Guerrero, S. E. (2016). Survey on RGB, 3D, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(8), 1548–1568.CrossRef
Zurück zum Zitat Crane, K., Weischedel, C., & Wardetzky, M. (2013). Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics, 32(5), 1–11.CrossRef Crane, K., Weischedel, C., & Wardetzky, M. (2013). Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics, 32(5), 1–11.CrossRef
Zurück zum Zitat Creusot, C., Pears, N., & Austin, J. (2013). A machine-learning approach to keypoint detection and landmarking on 3D meshes. International Journal of Computer Vision, 102(1–3), 146–179.CrossRef Creusot, C., Pears, N., & Austin, J. (2013). A machine-learning approach to keypoint detection and landmarking on 3D meshes. International Journal of Computer Vision, 102(1–3), 146–179.CrossRef
Zurück zum Zitat Davies, R. H., Twining, C. J., Cootes, T. F., Waterton, J. C., & Taylor, C. J. (2002). A minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging, 21(5), 525–537.CrossRefMATH Davies, R. H., Twining, C. J., Cootes, T. F., Waterton, J. C., & Taylor, C. J. (2002). A minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging, 21(5), 525–537.CrossRefMATH
Zurück zum Zitat Drira, H., Amor, B. B., Srivastava, A., Daoudi, M., & Slama, R. (2013). 3d face recognition under expressions, occlusions, and pose variations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2270–2283.CrossRef Drira, H., Amor, B. B., Srivastava, A., Daoudi, M., & Slama, R. (2013). 3d face recognition under expressions, occlusions, and pose variations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2270–2283.CrossRef
Zurück zum Zitat Egger, B., Smith, W. A., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., et al. (2020). 3D morphable face models-past, present, and future. ACM Transactions on Graphics, 39(5), 1–38.CrossRef Egger, B., Smith, W. A., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., et al. (2020). 3D morphable face models-past, present, and future. ACM Transactions on Graphics, 39(5), 1–38.CrossRef
Zurück zum Zitat Eldar, Y., Lindenbaum, M., Porat, M., & Zeevi, Y. Y. (1997). The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9), 1305–1315.CrossRef Eldar, Y., Lindenbaum, M., Porat, M., & Zeevi, Y. Y. (1997). The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9), 1305–1315.CrossRef
Zurück zum Zitat Fan, Z., Hu, X., Chen, C., & Peng, S. (2018). Dense semantic and topological correspondence of 3D faces without landmarks. In European conference on computer vision (pp. 523–539). Fan, Z., Hu, X., Chen, C., & Peng, S. (2018). Dense semantic and topological correspondence of 3D faces without landmarks. In European conference on computer vision (pp. 523–539).
Zurück zum Zitat Fan, Z., Hu, X., Chen, C., & Peng, S. (2019). Boosting local shape matching for dense 3D face correspondence. In IEEE conference on computer vision and pattern recognition (pp. 10944–10954). Fan, Z., Hu, X., Chen, C., & Peng, S. (2019). Boosting local shape matching for dense 3D face correspondence. In IEEE conference on computer vision and pattern recognition (pp. 10944–10954).
Zurück zum Zitat Feldmar, J., & Ayache, N. (1996). Rigid, affine and locally affine registration of free-form surfaces. International Journal of Computer Vision, 18(2), 99–119.CrossRef Feldmar, J., & Ayache, N. (1996). Rigid, affine and locally affine registration of free-form surfaces. International Journal of Computer Vision, 18(2), 99–119.CrossRef
Zurück zum Zitat Ferrari, C., Berretti, S., Pala, P., & Del Bimbo, A. (2021). A sparse and locally coherent morphable face model for dense semantic correspondence across heterogeneous 3D faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 6667–6682.CrossRef Ferrari, C., Berretti, S., Pala, P., & Del Bimbo, A. (2021). A sparse and locally coherent morphable face model for dense semantic correspondence across heterogeneous 3D faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 6667–6682.CrossRef
Zurück zum Zitat Ferrari, C., Lisanti, G., Berretti, S., & Del Bimbo, A. (2017). A dictionary learning-based 3D morphable shape model. IEEE Transactions on Multimedia, 19(12), 2666–2679.CrossRef Ferrari, C., Lisanti, G., Berretti, S., & Del Bimbo, A. (2017). A dictionary learning-based 3D morphable shape model. IEEE Transactions on Multimedia, 19(12), 2666–2679.CrossRef
Zurück zum Zitat Fujiwara, K., Nishino, K., Takamatsu, J., Zheng, B., & Ikeuchi, K. (2011). Locally rigid globally non-rigid surface registration. In International conference on computer vision (pp. 1527–1534). Fujiwara, K., Nishino, K., Takamatsu, J., Zheng, B., & Ikeuchi, K. (2011). Locally rigid globally non-rigid surface registration. In International conference on computer vision (pp. 1527–1534).
Zurück zum Zitat Garrido, P., Valgaerts, L., Rehmsen, O., Thormahlen, T., Perez, P., & Theobalt, C. (2014). Automatic face reenactment. In IEEE conference on computer vision and pattern recognition (pp. 4217–4224). Garrido, P., Valgaerts, L., Rehmsen, O., Thormahlen, T., Perez, P., & Theobalt, C. (2014). Automatic face reenactment. In IEEE conference on computer vision and pattern recognition (pp. 4217–4224).
Zurück zum Zitat Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M., Schönborn, S., & Vetter, T. (2018). Morphable face models-an open framework. In IEEE international conference on automatic face and gesture recognition (pp. 75–82). Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M., Schönborn, S., & Vetter, T. (2018). Morphable face models-an open framework. In IEEE international conference on automatic face and gesture recognition (pp. 75–82).
Zurück zum Zitat Gilani, S. Z., Mian, A., & Eastwood, P. (2017). Deep, dense and accurate 3D face correspondence for generating population specific deformable models. Pattern Recognition, 69, 238–250.CrossRef Gilani, S. Z., Mian, A., & Eastwood, P. (2017). Deep, dense and accurate 3D face correspondence for generating population specific deformable models. Pattern Recognition, 69, 238–250.CrossRef
Zurück zum Zitat Gilani, S. Z., Mian, A., Shafait, F., & Reid, I. (2017). Dense 3D face correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(7), 1584–1598.CrossRef Gilani, S. Z., Mian, A., Shafait, F., & Reid, I. (2017). Dense 3D face correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(7), 1584–1598.CrossRef
Zurück zum Zitat Grewe, C. M., & Zachow, S. (2016). Fully automated and highly accurate dense correspondence for facial surfaces. In European conference on computer vision (pp. 552–568). Grewe, C. M., & Zachow, S. (2016). Fully automated and highly accurate dense correspondence for facial surfaces. In European conference on computer vision (pp. 552–568).
Zurück zum Zitat Gu, X., Wang, S., Kim, J., Zeng, Y., Wang, Y., Qin, H., & Samaras, D. (2007). Ricci flow for 3D shape analysis. In IEEE international conference on computer vision (pp. 1–8). Gu, X., Wang, S., Kim, J., Zeng, Y., Wang, Y., Qin, H., & Samaras, D. (2007). Ricci flow for 3D shape analysis. In IEEE international conference on computer vision (pp. 1–8).
Zurück zum Zitat Li, H., Sumner, R. W., & Pauly, M. (2008). Global correspondence optimization for non-rigid registration of depth scans. In Computer graphics forum (Vol. 27, pp. 1421–1430). Li, H., Sumner, R. W., & Pauly, M. (2008). Global correspondence optimization for non-rigid registration of depth scans. In Computer graphics forum (Vol. 27, pp. 1421–1430).
Zurück zum Zitat Li, T., Bolkart, T., Black, M. J., Li, H., & Romero, J. (2017). Learning a model of facial shape and expression from 4D scans. ACM Transaction on Graphics, 36(6), 1–194. Li, T., Bolkart, T., Black, M. J., Li, H., & Romero, J. (2017). Learning a model of facial shape and expression from 4D scans. ACM Transaction on Graphics, 36(6), 1–194.
Zurück zum Zitat Liu, F., Tran, L., & Liu, X. (2019). 3D face modeling from diverse raw scan data. In IEEE international conference on computer vision (pp. 9408–9418). Liu, F., Tran, L., & Liu, X. (2019). 3D face modeling from diverse raw scan data. In IEEE international conference on computer vision (pp. 9408–9418).
Zurück zum Zitat Liu, F., Zeng, D., Zhao, Q., & Liu, X. (2016). Joint face alignment and 3D face reconstruction. In European conference on computer vision (pp. 545–560). Liu, F., Zeng, D., Zhao, Q., & Liu, X. (2016). Joint face alignment and 3D face reconstruction. In European conference on computer vision (pp. 545–560).
Zurück zum Zitat Maiseli, B., Gu, Y., & Gao, H. (2017). Recent developments and trends in point set registration methods. Journal of Visual Communication and Image Representation, 46, 95–106.CrossRef Maiseli, B., Gu, Y., & Gao, H. (2017). Recent developments and trends in point set registration methods. Journal of Visual Communication and Image Representation, 46, 95–106.CrossRef
Zurück zum Zitat Ma, J., Zhao, J., Tian, J., Yuille, A. L., & Tu, Z. (2014). Robust point matching via vector field consensus. IEEE Transactions on Image Processing, 23(4), 1706–1721.MathSciNetCrossRefMATH Ma, J., Zhao, J., Tian, J., Yuille, A. L., & Tu, Z. (2014). Robust point matching via vector field consensus. IEEE Transactions on Image Processing, 23(4), 1706–1721.MathSciNetCrossRefMATH
Zurück zum Zitat Mohammadzade, H., & Hatzinakos, D. (2012). Iterative closest normal point for 3D face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2), 381–397.CrossRef Mohammadzade, H., & Hatzinakos, D. (2012). Iterative closest normal point for 3D face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2), 381–397.CrossRef
Zurück zum Zitat Myronenko, A., & Song, X. (2010). Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262–2275.CrossRef Myronenko, A., & Song, X. (2010). Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262–2275.CrossRef
Zurück zum Zitat Pan, G., Zhang, X., Wang, Y., Hu, Z., Zheng, X., & Wu, Z. (2013). Establishing point correspondence of 3D faces via sparse facial deformable model. IEEE Transactions on Image Processing, 22(11), 4170–4181.MathSciNetCrossRefMATH Pan, G., Zhang, X., Wang, Y., Hu, Z., Zheng, X., & Wu, Z. (2013). Establishing point correspondence of 3D faces via sparse facial deformable model. IEEE Transactions on Image Processing, 22(11), 4170–4181.MathSciNetCrossRefMATH
Zurück zum Zitat Patel, A., & Smith, W. A. (2009). 3D morphable face models revisited. In IEEE conference on computer vision and pattern recognition (pp. 1327–1334). Patel, A., & Smith, W. A. (2009). 3D morphable face models revisited. In IEEE conference on computer vision and pattern recognition (pp. 1327–1334).
Zurück zum Zitat Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview of the face recognition grand challenge. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 947–954). Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview of the face recognition grand challenge. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 947–954).
Zurück zum Zitat Ploumpis, S., Ververas, E., O’Sullivan, E., Moschoglou, S., Wang, H., Pears, N., Smith, W., Gecer, B., & Zafeiriou, S. P. (2020). Towards a complete 3D morphable model of the human head. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 4142–4160.CrossRef Ploumpis, S., Ververas, E., O’Sullivan, E., Moschoglou, S., Wang, H., Pears, N., Smith, W., Gecer, B., & Zafeiriou, S. P. (2020). Towards a complete 3D morphable model of the human head. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 4142–4160.CrossRef
Zurück zum Zitat Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.CrossRefMATH Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.CrossRefMATH
Zurück zum Zitat Salazar, A., Wuhrer, S., Shu, C., & Prieto, F. (2014). Fully automatic expression-invariant face correspondence. Machine Vision and Applications, 25(4), 859–879.CrossRef Salazar, A., Wuhrer, S., Shu, C., & Prieto, F. (2014). Fully automatic expression-invariant face correspondence. Machine Vision and Applications, 25(4), 859–879.CrossRef
Zurück zum Zitat Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., & Akarun, L. (2008). Bosphorus database for 3D face analysis. In European workshop on biometrics and identity management (pp. 47–56). Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., & Akarun, L. (2008). Bosphorus database for 3D face analysis. In European workshop on biometrics and identity management (pp. 47–56).
Zurück zum Zitat Segundo, M. P. P., Silva, L., Bellon, O. R. P., & Queirolo, C. C. (2010). Automatic face segmentation and facial landmark detection in range images. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(5), 1319–1330.CrossRef Segundo, M. P. P., Silva, L., Bellon, O. R. P., & Queirolo, C. C. (2010). Automatic face segmentation and facial landmark detection in range images. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(5), 1319–1330.CrossRef
Zurück zum Zitat Sorkine, O., & Alexa, M. (2007) As-rigid-as-possible surface modeling. In Symposium on geometry processing (Vol. 4, pp. 109–116). Sorkine, O., & Alexa, M. (2007) As-rigid-as-possible surface modeling. In Symposium on geometry processing (Vol. 4, pp. 109–116).
Zurück zum Zitat Sorkine-Hornung, O., & Rabinovich, M. (2017). Least-squares rigid motion using SVD. Computing, 1(1), 1–5. Sorkine-Hornung, O., & Rabinovich, M. (2017). Least-squares rigid motion using SVD. Computing, 1(1), 1–5.
Zurück zum Zitat Sun, Y., & Abidi, M. A. (2001). Surface matching by 3D point’s fingerprint. In IEEE international conference on computer vision (Vol. 2, pp. 263–269). Sun, Y., & Abidi, M. A. (2001). Surface matching by 3D point’s fingerprint. In IEEE international conference on computer vision (Vol. 2, pp. 263–269).
Zurück zum Zitat Suwajanakorn, S., Seitz, S. M., & Kemelmacher-Shlizerman, I. (2017). Synthesizing obama: learning lip sync from audio. ACM Transactions on Graphics, 36(4), 1–13.CrossRef Suwajanakorn, S., Seitz, S. M., & Kemelmacher-Shlizerman, I. (2017). Synthesizing obama: learning lip sync from audio. ACM Transactions on Graphics, 36(4), 1–13.CrossRef
Zurück zum Zitat Tam, G. K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y., Marshall, D., Martin, R. R., Sun, X.-F., & Rosin, P. L. (2012). Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, 19(7), 1199–1217.CrossRef Tam, G. K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y., Marshall, D., Martin, R. R., Sun, X.-F., & Rosin, P. L. (2012). Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, 19(7), 1199–1217.CrossRef
Zurück zum Zitat Terzopoulos, D., Platt, J., Barr, A., & Fleischer, K. (1987). Elastically deformable models. In ACM annual conference on computer graphics and interactive techniques (pp. 205–214). Terzopoulos, D., Platt, J., Barr, A., & Fleischer, K. (1987). Elastically deformable models. In ACM annual conference on computer graphics and interactive techniques (pp. 205–214).
Zurück zum Zitat Vlasic, D., Brand, M., Pfister, H., & Popovic, J. (2005). Face transfer with multilinear models. ACM Transactions on Graphics, 24(3), 426–433.CrossRef Vlasic, D., Brand, M., Pfister, H., & Popovic, J. (2005). Face transfer with multilinear models. ACM Transactions on Graphics, 24(3), 426–433.CrossRef
Zurück zum Zitat Wang, Y., Liu, J., & Tang, X. (2010). Robust 3D face recognition by local shape difference boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(10), 1858–1870.CrossRef Wang, Y., Liu, J., & Tang, X. (2010). Robust 3D face recognition by local shape difference boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(10), 1858–1870.CrossRef
Zurück zum Zitat Yang, H., Zhu, H., Wang, Y., Huang, M., Shen, Q., Yang, R., & Cao, X. (2020). Facescape: A large-scale high quality 3D face dataset and detailed riggable 3D face prediction. In IEEE conference on computer vision and pattern recognition (pp. 601–610). Yang, H., Zhu, H., Wang, Y., Huang, M., Shen, Q., Yang, R., & Cao, X. (2020). Facescape: A large-scale high quality 3D face dataset and detailed riggable 3D face prediction. In IEEE conference on computer vision and pattern recognition (pp. 601–610).
Zurück zum Zitat Yang, J., Li, H., Campbell, D., & Jia, Y. (2015). Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2241–2254. Yang, J., Li, H., Campbell, D., & Jia, Y. (2015). Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2241–2254.
Zurück zum Zitat Yin, L., Wei, X., Sun, Y., Wang, J., & Rosato, M. J. (2006). A 3D facial expression database for facial behavior research. In International conference on automatic face and gesture recognition (pp. 211–216). Yin, L., Wei, X., Sun, Y., Wang, J., & Rosato, M. J. (2006). A 3D facial expression database for facial behavior research. In International conference on automatic face and gesture recognition (pp. 211–216).
Zurück zum Zitat Zeng, W., Samaras, D., & Gu, D. (2010). Ricci flow for 3D shape analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 662–677.CrossRef Zeng, W., Samaras, D., & Gu, D. (2010). Ricci flow for 3D shape analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 662–677.CrossRef
Zurück zum Zitat Zhang, C., Smith, W. A., Dessein, A., Pears, N., & Dai, H. (2016). Functional faces: Groupwise dense correspondence using functional maps. In IEEE conference on computer vision and pattern recognition (pp. 5033–5041). Zhang, C., Smith, W. A., Dessein, A., Pears, N., & Dai, H. (2016). Functional faces: Groupwise dense correspondence using functional maps. In IEEE conference on computer vision and pattern recognition (pp. 5033–5041).
Zurück zum Zitat Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2), 119–152.CrossRef Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2), 119–152.CrossRef
Zurück zum Zitat Zhu, X., Liu, X., Lei, Z., & Li, S. Z. (2017). Face alignment in full pose range: A 3D total solution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1), 78–92.CrossRef Zhu, X., Liu, X., Lei, Z., & Li, S. Z. (2017). Face alignment in full pose range: A 3D total solution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1), 78–92.CrossRef
Zurück zum Zitat Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., Pérez, P., Stamminger, M., Nießner, M., & Theobalt, C. (2018). State of the art on monocular 3D face reconstruction, tracking, and applications. In Computer graphics forum (Vol. 37, pp. 523–550). Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., Pérez, P., Stamminger, M., Nießner, M., & Theobalt, C. (2018). State of the art on monocular 3D face reconstruction, tracking, and applications. In Computer graphics forum (Vol. 37, pp. 523–550).
Zurück zum Zitat Zulqarnain Gilani, S., Shafait, F., & Mian, A. (2015). Shape-based automatic detection of a large number of 3D facial landmarks. In IEEE conference on computer vision and pattern recognition (pp. 4639–4648). Zulqarnain Gilani, S., Shafait, F., & Mian, A. (2015). Shape-based automatic detection of a large number of 3D facial landmarks. In IEEE conference on computer vision and pattern recognition (pp. 4639–4648).
Metadaten
Titel
Towards Fine-Grained Optimal 3D Face Dense Registration: An Iterative Dividing and Diffusing Method
verfasst von
Zhenfeng Fan
Silong Peng
Shihong Xia
Publikationsdatum
03.06.2023
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 9/2023
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01825-7

Weitere Artikel der Ausgabe 9/2023

International Journal of Computer Vision 9/2023 Zur Ausgabe

Premium Partner