Skip to main content
Erschienen in: Wireless Networks 2/2022

12.01.2022 | Original Paper

Towards recurrent neural network with multi-path feature fusion for signal modulation recognition

verfasst von: Zihang Lei, Mengxi Jiang, Guangsong Yang, Tianmin Guan, Peng Huang, Yu Gu, Zhenghua Xu, Qiubo Ye

Erschienen in: Wireless Networks | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning (DL) technology is an effective tool for automatic modulation recognition (AMR) in the field of cognitive radio (CR). Most of the existing DL-based approaches usually design a deep network with many layers, in which only refined features from the final layer are used for AMR. However, rough features from other layers (i.e., features captured in a shallow network with fewer layers) can also provide useful information for modulation recognition. These rough features are not carefully exploited in previous approaches. In this paper, we propose a novel multi-path features fusion network for AMR, in which both refined and rough features are learned. The proposed approach identifies 11 signals including digital modulation and analog modulation generated by the GNU radio and compared to the classic network in all SNR. The experiment results show that the effectiveness of our approach. Especially, our approach is able to achieve 99.04% accuracy in +18dB SNR which outperforms all comparison approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abramson, N., Braverman, D. J., & Sebestyen, G. S. (2006). Pattern recognition and machine learning. Publications of the American Statistical Association, 103(4), 886–887. Abramson, N., Braverman, D. J., & Sebestyen, G. S. (2006). Pattern recognition and machine learning. Publications of the American Statistical Association, 103(4), 886–887.
2.
Zurück zum Zitat Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and knn. IEEE Transactions on Wireless Communications, 11(8), 2742–2750. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and knn. IEEE Transactions on Wireless Communications, 11(8), 2742–2750.
3.
Zurück zum Zitat Zhu, Z., & Nandi, A. K. (2014). Machine Learning for Modulation Classification. New York: Wiley.CrossRef Zhu, Z., & Nandi, A. K. (2014). Machine Learning for Modulation Classification. New York: Wiley.CrossRef
4.
Zurück zum Zitat Zhang, X., Chen, J., & Sun, Z. (2017). Modulation recognition of communication signals based on schks-ssvm. Journal of Systems Engineering and Electronics, 28, 627.CrossRef Zhang, X., Chen, J., & Sun, Z. (2017). Modulation recognition of communication signals based on schks-ssvm. Journal of Systems Engineering and Electronics, 28, 627.CrossRef
5.
Zurück zum Zitat Xie, L., & Wan, Q. (2017). Cyclic feature-based modulation recognition using compressive sensing. IEEE Wireless Communications Letters, 6(3), 402–405.CrossRef Xie, L., & Wan, Q. (2017). Cyclic feature-based modulation recognition using compressive sensing. IEEE Wireless Communications Letters, 6(3), 402–405.CrossRef
6.
Zurück zum Zitat Park, C. S., Choi, J. H., & Nah, S. P. (2008). Automatic modulation recognition of digital signals using wavelet features and svm. In: 10th international conference on advanced communication technology, 2008. ICACT 2008. Park, C. S., Choi, J. H., & Nah, S. P. (2008). Automatic modulation recognition of digital signals using wavelet features and svm. In: 10th international conference on advanced communication technology, 2008. ICACT 2008.
7.
Zurück zum Zitat Oshea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications& Networking, 3(4), 563–575.CrossRef Oshea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications& Networking, 3(4), 563–575.CrossRef
8.
Zurück zum Zitat Aceto, G., Ciuonzo, D., Montieri, A., & Pescape, A. (2019). Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges. IEEE Transactions on Network and Service Management, 16, 445–458.CrossRef Aceto, G., Ciuonzo, D., Montieri, A., & Pescape, A. (2019). Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges. IEEE Transactions on Network and Service Management, 16, 445–458.CrossRef
9.
Zurück zum Zitat Lin, Y., Tu, Y., Dou, Z., & Wu, Z. (2017). The application of deep learning in communication signal modulation recognition. In: 2017 IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–5. IEEE. Lin, Y., Tu, Y., Dou, Z., & Wu, Z. (2017). The application of deep learning in communication signal modulation recognition. In: 2017 IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–5. IEEE.
10.
Zurück zum Zitat Zhang, T., Shuai, C., & Zhou, Y. (2020). Deep learning for robust automatic modulation recognition method for iot applications. IEEE Access, 99, 1. Zhang, T., Shuai, C., & Zhou, Y. (2020). Deep learning for robust automatic modulation recognition method for iot applications. IEEE Access, 99, 1.
16.
Zurück zum Zitat Liu, X., Yang, D., & El Gamal, A. (2017). Deep neural network architectures for modulation classification. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers, pp. 915–919. IEEE. Liu, X., Yang, D., & El Gamal, A. (2017). Deep neural network architectures for modulation classification. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers, pp. 915–919. IEEE.
17.
19.
Zurück zum Zitat O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks. In: International conference on engineering applications of neural networks, pp. 213–226. Berlin: Springer O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks. In: International conference on engineering applications of neural networks, pp. 213–226. Berlin: Springer
22.
Zurück zum Zitat Huang, S., Liy, X., Jiang, Z., Guo, X., & Men, A. (2018). Fully convolutional network with densely feature fusion models for object detection. In: 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE. Huang, S., Liy, X., Jiang, Z., Guo, X., & Men, A. (2018). Fully convolutional network with densely feature fusion models for object detection. In: 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE.
24.
Zurück zum Zitat Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.CrossRef Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.CrossRef
25.
Zurück zum Zitat Roganovic, M. M., Neskovic, A. M., & Neskovic, N. J. (2009). Application of artificial neural networks in classification of digital modulations for software defined radio. In: IEEE EUROCON 2009, pp. 1700–1706. IEEE. Roganovic, M. M., Neskovic, A. M., & Neskovic, N. J. (2009). Application of artificial neural networks in classification of digital modulations for software defined radio. In: IEEE EUROCON 2009, pp. 1700–1706. IEEE.
28.
Zurück zum Zitat Wei, M., Wei, Z., Yang, J., & Sang, L. (2018). Automatic modulation recognition of digital signal based on auto-encoding network in mimo system. In: 2018 IEEE 18th international conference on communication technology (ICCT), pp. 1017–1021 . https://doi.org/10.1109/ICCT.2018.8600148 Wei, M., Wei, Z., Yang, J., & Sang, L. (2018). Automatic modulation recognition of digital signal based on auto-encoding network in mimo system. In: 2018 IEEE 18th international conference on communication technology (ICCT), pp. 1017–1021 . https://​doi.​org/​10.​1109/​ICCT.​2018.​8600148
32.
Zurück zum Zitat Li, M., Li, O., Liu, G., & Zhang, C. (2018). Generative adversarial networks-based semi-supervised automatic modulation recognition for cognitive radio networks. Sensors, 18(11), 3913.CrossRef Li, M., Li, O., Liu, G., & Zhang, C. (2018). Generative adversarial networks-based semi-supervised automatic modulation recognition for cognitive radio networks. Sensors, 18(11), 3913.CrossRef
34.
Zurück zum Zitat Sutskever, I., Vinyals, O., & Le, Q. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 4. Sutskever, I., Vinyals, O., & Le, Q. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 4.
35.
Zurück zum Zitat Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., & Hinton, G. (2014). Grammar as a foreign language. arXiv preprint arXiv:1412.7449 Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., & Hinton, G. (2014). Grammar as a foreign language. arXiv preprint arXiv:​1412.​7449
36.
Zurück zum Zitat Lee, Y.H., Moss, D.J., Faraone, J., Blackmore, P., Salmond, D., Boland, D., & Leong, P.H., et al. (2018). Long short-term memory for radio frequency spectral prediction and its real-time FPGA implementation. In: MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), pp. 1–9. IEEE. Lee, Y.H., Moss, D.J., Faraone, J., Blackmore, P., Salmond, D., Boland, D., & Leong, P.H., et al. (2018). Long short-term memory for radio frequency spectral prediction and its real-time FPGA implementation. In: MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), pp. 1–9. IEEE.
37.
Zurück zum Zitat Yu, X., Xu, L., Ma, L., Chen, Z., & Yan, Y. (2017). Solar radio spectrum classification with lstm. In: 2017 IEEE international conference on multimedia & expo workshops (ICMEW), pp. 519–524. IEEE. Yu, X., Xu, L., Ma, L., Chen, Z., & Yan, Y. (2017). Solar radio spectrum classification with lstm. In: 2017 IEEE international conference on multimedia & expo workshops (ICMEW), pp. 519–524. IEEE.
38.
Zurück zum Zitat Sang, Y., Li, L. (2018). Application of novel architectures for modulation recognition. In: 2018 IEEE Asia Pacific conference on circuits and systems (APCCAS), pp. 159–162. IEEE. Sang, Y., Li, L. (2018). Application of novel architectures for modulation recognition. In: 2018 IEEE Asia Pacific conference on circuits and systems (APCCAS), pp. 159–162. IEEE.
39.
Zurück zum Zitat Song, L., Qian, X., Li, H., & Chen, Y. (2017). Pipelayer: A pipelined reram-based accelerator for deep learning. In: 2017 IEEE international symposium on high performance computer architecture (HPCA), pp. 541–552. IEEE. Song, L., Qian, X., Li, H., & Chen, Y. (2017). Pipelayer: A pipelined reram-based accelerator for deep learning. In: 2017 IEEE international symposium on high performance computer architecture (HPCA), pp. 541–552. IEEE.
40.
Zurück zum Zitat Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp. 448–456. PMLR. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp. 448–456. PMLR.
41.
Zurück zum Zitat Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv
42.
Zurück zum Zitat Graves, A., Jaitly, N., & Mohamed, A.R. (2013). Hybrid speech recognition with deep bidirectional lstm. In: 2013 IEEE workshop on automatic speech recognition and understanding, pp. 273–278. IEEE. Graves, A., Jaitly, N., & Mohamed, A.R. (2013). Hybrid speech recognition with deep bidirectional lstm. In: 2013 IEEE workshop on automatic speech recognition and understanding, pp. 273–278. IEEE.
43.
Zurück zum Zitat O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179.CrossRef O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179.CrossRef
44.
Zurück zum Zitat Courtat, T., Bourboux, & H.d.M.d. (2020). A light neural network for modulation detection under impairments. arXiv preprint. arXiv:2003.12260 Courtat, T., Bourboux, & H.d.M.d. (2020). A light neural network for modulation detection under impairments. arXiv preprint. arXiv:​2003.​12260
Metadaten
Titel
Towards recurrent neural network with multi-path feature fusion for signal modulation recognition
verfasst von
Zihang Lei
Mengxi Jiang
Guangsong Yang
Tianmin Guan
Peng Huang
Yu Gu
Zhenghua Xu
Qiubo Ye
Publikationsdatum
12.01.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02877-8

Weitere Artikel der Ausgabe 2/2022

Wireless Networks 2/2022 Zur Ausgabe