Skip to main content
Erschienen in: Cluster Computing 3/2019

30.12.2017

Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode

verfasst von: Fei Wang, Zhi-qiang Chao, Lian-bing Huang, Hua-ying Li, Chuan-qing Zhang

Erschienen in: Cluster Computing | Sonderheft 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aimed at the nonlinearity and uncertainty of the manipulator system, a RBF (radial basis function) neural network-based fuzzy sliding-mode control method was proposed in this paper, in order to make the manipulator track the given trajectory at an ideal dynamic quality. In this method, the equivalent part of the sliding-mode control is approximated by the RBF neural network, in which no model information is required. Meanwhile, a fuzzy controller is developed to make adaptive adjustment of the sliding-mode control’s switching gains according to the distance between the current motor point and the sliding-mode surface, thus effectively the problem of chattering is solved. This method has, to some extent, improved the performance of response and tracking, and reduced the time of adjustment and chattering of input control. The system stability is verified by Lyapunov’s theorem. The simulation result suggests that the algorithm designed for the three-degree-of-freedom (3DOF) manipulator system is effective.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu, C.Z.: Research on intelligent backstepping sliding mode control of nonlinear robots. Huaqiao University (2012) Xu, C.Z.: Research on intelligent backstepping sliding mode control of nonlinear robots. Huaqiao University (2012)
2.
Zurück zum Zitat Wang, Y.N.: Intelligent Control Engineering of Robot, pp. 7–14. Science Press, Beijing (2004) Wang, Y.N.: Intelligent Control Engineering of Robot, pp. 7–14. Science Press, Beijing (2004)
3.
Zurück zum Zitat Ding, X.G.: Research on Robot Control, pp. 7–13. Zhejiang University Press, Hangzhou (2006) Ding, X.G.: Research on Robot Control, pp. 7–13. Zhejiang University Press, Hangzhou (2006)
4.
Zurück zum Zitat Liu, J.K.: Sliding Mode Control Design and Matlab Simulation, pp. 4–16. Tsinghua University Press, Beijing (2012) Liu, J.K.: Sliding Mode Control Design and Matlab Simulation, pp. 4–16. Tsinghua University Press, Beijing (2012)
5.
Zurück zum Zitat Yang, Z.Y., Wu, J., Mei, J.P.: Motor-mechanism dynamic model based neural network optimized computed torque control of a high speed parallel manipulator. Mechatronics 17(7), 381–390 (2007)CrossRef Yang, Z.Y., Wu, J., Mei, J.P.: Motor-mechanism dynamic model based neural network optimized computed torque control of a high speed parallel manipulator. Mechatronics 17(7), 381–390 (2007)CrossRef
6.
Zurück zum Zitat Hu, S.B., Lu, M.X.: Adaptive double fuzzy sliding mode control for three-links spatial robot. J. Tongji Univ. (Nat Sci.) 40(4), 622–628 (2012)MathSciNetMATH Hu, S.B., Lu, M.X.: Adaptive double fuzzy sliding mode control for three-links spatial robot. J. Tongji Univ. (Nat Sci.) 40(4), 622–628 (2012)MathSciNetMATH
7.
Zurück zum Zitat Emna, Z., Hanene, M., Nabil, D.: Indirect sliding mode neural-network control for holonomic constrained robot manipulator. Int. J. Intell. Syst. Technol. Appl. 9(2), 150–168 (2010) Emna, Z., Hanene, M., Nabil, D.: Indirect sliding mode neural-network control for holonomic constrained robot manipulator. Int. J. Intell. Syst. Technol. Appl. 9(2), 150–168 (2010)
8.
Zurück zum Zitat Hu, S.B., Lu, M.X.: Feedback linearization double fuzzy sliding mode control for multi-links robot. Mech. Sci. Technol. Aerosp. Eng. 32(1), 105–115 (2013) Hu, S.B., Lu, M.X.: Feedback linearization double fuzzy sliding mode control for multi-links robot. Mech. Sci. Technol. Aerosp. Eng. 32(1), 105–115 (2013)
9.
Zurück zum Zitat Al-khazraji, A., Essounbouli, N., Hamzaoui, A., Nollet, F., Zaytoon, J.: Type-2 fuzzy sliding mode control without reaching phase for nonlinear system. Eng. Appl. Artif. Intell. 24(1), 23–38 (2011)CrossRef Al-khazraji, A., Essounbouli, N., Hamzaoui, A., Nollet, F., Zaytoon, J.: Type-2 fuzzy sliding mode control without reaching phase for nonlinear system. Eng. Appl. Artif. Intell. 24(1), 23–38 (2011)CrossRef
10.
Zurück zum Zitat Guo, L.P., Hung, J.Y., Nelms, R.M.: Comparative evaluation of sliding mode fuzzy controller and PID controller for a boost converter. Electr. Power Syst. Res. 81(1), 99–106 (2011)CrossRef Guo, L.P., Hung, J.Y., Nelms, R.M.: Comparative evaluation of sliding mode fuzzy controller and PID controller for a boost converter. Electr. Power Syst. Res. 81(1), 99–106 (2011)CrossRef
11.
Zurück zum Zitat Yang, H.L., Jiang, B., Zhang, K.: Direct selfrepairing control for quadrotor helicopter attitude systems. Math. Probl. Eng. 6, 1–11 (2014) Yang, H.L., Jiang, B., Zhang, K.: Direct selfrepairing control for quadrotor helicopter attitude systems. Math. Probl. Eng. 6, 1–11 (2014)
12.
Zurück zum Zitat Aloui, S., Pages, O., Ei Hajjaji, A., Chaari, A., Yassine, K.: Improved fuzzy sliding mode control for a class of MIMO nonlinear uncertain and perturbed system. Appl. Soft Comput. J. 11(1), 820–826 (2011)CrossRef Aloui, S., Pages, O., Ei Hajjaji, A., Chaari, A., Yassine, K.: Improved fuzzy sliding mode control for a class of MIMO nonlinear uncertain and perturbed system. Appl. Soft Comput. J. 11(1), 820–826 (2011)CrossRef
13.
Zurück zum Zitat Wai, R.J., Lin, C.M., Hsu, C.F.: Adaptive fuzzy sliding mode control for electrical servo drive. Fuzzy Sets Syst. 143, 295–310 (2004)MathSciNetCrossRef Wai, R.J., Lin, C.M., Hsu, C.F.: Adaptive fuzzy sliding mode control for electrical servo drive. Fuzzy Sets Syst. 143, 295–310 (2004)MathSciNetCrossRef
14.
Zurück zum Zitat Zhang, L.Y., Liu, T., Sun, Y.S., Chen, L.: Research on neural network blind equalization algorithm with structure optimized by genetic algorithm. In: 2010 Sixth International Conference on Natural Computation, vol. 8, pp. 1451–1454. (2010) Zhang, L.Y., Liu, T., Sun, Y.S., Chen, L.: Research on neural network blind equalization algorithm with structure optimized by genetic algorithm. In: 2010 Sixth International Conference on Natural Computation, vol. 8, pp. 1451–1454. (2010)
15.
Zurück zum Zitat Man, Z.R., Yu, X.H., Eshraghian, K., Panasiwami, M.: A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulator. In: IEEE International Conference on Neural Networks, vol. 5, pp. 2403–2408. (1995) Man, Z.R., Yu, X.H., Eshraghian, K., Panasiwami, M.: A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulator. In: IEEE International Conference on Neural Networks, vol. 5, pp. 2403–2408. (1995)
16.
Zurück zum Zitat Da, P.F., Song, W.Z.: Sliding mode control based on fuzzy neural networks for nonlinear systems represented by input-output models. Acta Automatic Sinica 26(1), 136–139 (2000)MathSciNet Da, P.F., Song, W.Z.: Sliding mode control based on fuzzy neural networks for nonlinear systems represented by input-output models. Acta Automatic Sinica 26(1), 136–139 (2000)MathSciNet
17.
Zurück zum Zitat Zhao, H.C., Yu, H.Y., Gu, W.J.: Fuzzy neural network-based sliding mode control for missile’s overload control system. In: 2005 International Conference on Neural Networks and Brain, vol. 3, pp. 1786–1790 (2005) Zhao, H.C., Yu, H.Y., Gu, W.J.: Fuzzy neural network-based sliding mode control for missile’s overload control system. In: 2005 International Conference on Neural Networks and Brain, vol. 3, pp. 1786–1790 (2005)
18.
Zurück zum Zitat Hu, S.B., Lu, M.X.: Fuzzy sliding mode control for a three-links spatial robot based on RBF neural network. Appl. Mech. Mater. 141(1), 303–307 (2012) Hu, S.B., Lu, M.X.: Fuzzy sliding mode control for a three-links spatial robot based on RBF neural network. Appl. Mech. Mater. 141(1), 303–307 (2012)
19.
Zurück zum Zitat Frikha, S., Djemel, M., Derbel, N.: Neural network adaptive control scheme for nonlinear system with Lyapunov approach and sliding mode. Int. J. Intell. Comput. Cybern. 3(3), 495–513 (2010)MathSciNetCrossRef Frikha, S., Djemel, M., Derbel, N.: Neural network adaptive control scheme for nonlinear system with Lyapunov approach and sliding mode. Int. J. Intell. Comput. Cybern. 3(3), 495–513 (2010)MathSciNetCrossRef
20.
Zurück zum Zitat Noriaki, S.: Optimal control problem via self-adaptation sliding mode controller with neural network. Electron. Commun. Jpn 94(11), 1043–1049 (2011) Noriaki, S.: Optimal control problem via self-adaptation sliding mode controller with neural network. Electron. Commun. Jpn 94(11), 1043–1049 (2011)
21.
Zurück zum Zitat Lin, T.C.: Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4084–4099 (2010)MathSciNetCrossRef Lin, T.C.: Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4084–4099 (2010)MathSciNetCrossRef
22.
Zurück zum Zitat Wu, X.R.: The control theory research of neural network for the condenser cleaning robot. Hunan university (2011) Wu, X.R.: The control theory research of neural network for the condenser cleaning robot. Hunan university (2011)
23.
Zurück zum Zitat Hu, S.B., Lu, W.H., Cao, D.M., Xu, H.R.: Fast terminal fuzzy sliding mode control for a three-links spatial robot. Appl. Mech. Mater. 226–228, 840–843 (2012)CrossRef Hu, S.B., Lu, W.H., Cao, D.M., Xu, H.R.: Fast terminal fuzzy sliding mode control for a three-links spatial robot. Appl. Mech. Mater. 226–228, 840–843 (2012)CrossRef
24.
Zurück zum Zitat Huang, M., Huang, X.H., Tu, X.K., Li, Z.F., Wen, Y.: An online gain tuning proxy-based sliding mode control using neural network for a gait training robotic orthosis. Clust. Comput. 19(4), 1987–2000 (2016)CrossRef Huang, M., Huang, X.H., Tu, X.K., Li, Z.F., Wen, Y.: An online gain tuning proxy-based sliding mode control using neural network for a gait training robotic orthosis. Clust. Comput. 19(4), 1987–2000 (2016)CrossRef
25.
Zurück zum Zitat Chao, Z.Q.: Research on structure optimization and control technology for 6-DOF hydraulic platform. Academy of armored force engineering, (2010) Chao, Z.Q.: Research on structure optimization and control technology for 6-DOF hydraulic platform. Academy of armored force engineering, (2010)
26.
Zurück zum Zitat Long, Y., Du, Z.J., Wang, W.D.: RBF neural network with genetic algorithm optimization based sensitivity amplification control for exoskeleton. J. Harbin Inst. Technol. 47(7), 26–30 (2015)MathSciNet Long, Y., Du, Z.J., Wang, W.D.: RBF neural network with genetic algorithm optimization based sensitivity amplification control for exoskeleton. J. Harbin Inst. Technol. 47(7), 26–30 (2015)MathSciNet
27.
Zurück zum Zitat Van Cuong, P., Wang, Y.N.: Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Neural Comput. Appl. 27, 525–536 (2016)CrossRef Van Cuong, P., Wang, Y.N.: Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Neural Comput. Appl. 27, 525–536 (2016)CrossRef
28.
Zurück zum Zitat Nadeem, F., Alghazzawi, D., Mashat, A., Fakeeh, K., Almalaise, A., Hagras, H.: Modeling and predicting execution time of scientific workflows in the grid using radial basis function neural network. Clust. Comput. 20(3), 2805–2819 (2017)CrossRef Nadeem, F., Alghazzawi, D., Mashat, A., Fakeeh, K., Almalaise, A., Hagras, H.: Modeling and predicting execution time of scientific workflows in the grid using radial basis function neural network. Clust. Comput. 20(3), 2805–2819 (2017)CrossRef
29.
Zurück zum Zitat Zan, P., Yan, G.Z., Huang, B., Yu, L.Z.: Fuzzy wavelet neural network control for pneumatic artificial muscle. J. Syst. Simul. 19(23), 5566–5569 (2007) Zan, P., Yan, G.Z., Huang, B., Yu, L.Z.: Fuzzy wavelet neural network control for pneumatic artificial muscle. J. Syst. Simul. 19(23), 5566–5569 (2007)
30.
Zurück zum Zitat Huang, D.F., Chen, L.: Wavelet based fuzzy neural network control for free-floating space flexible manipulator to track desired trajectory. Eng. Mech. 29(12), 360–364 (2012) Huang, D.F., Chen, L.: Wavelet based fuzzy neural network control for free-floating space flexible manipulator to track desired trajectory. Eng. Mech. 29(12), 360–364 (2012)
31.
Zurück zum Zitat Liu, C., Zhao, S.D.: Application of RBF neural network and sliding mode control for a servo mechanical press. IEEE Int. Conf. Airc. Util. Syst. (AUS) 2016, 346–351 (2016) Liu, C., Zhao, S.D.: Application of RBF neural network and sliding mode control for a servo mechanical press. IEEE Int. Conf. Airc. Util. Syst. (AUS) 2016, 346–351 (2016)
32.
Zurück zum Zitat Liu, J.K.: RBF Neural Network Control for Mechanical Systems (Design, Analysis and Matlab Simulation), pp. 116–120. Tsinghua University Press, Beijing (2014) Liu, J.K.: RBF Neural Network Control for Mechanical Systems (Design, Analysis and Matlab Simulation), pp. 116–120. Tsinghua University Press, Beijing (2014)
33.
Zurück zum Zitat Wu, B., Xu, W.F., Chen, H.L.: Application of neural networks sliding mode control in tracking control of robot manipulators. Electr. Mach. Control 13(1), 99–104 (2009) Wu, B., Xu, W.F., Chen, H.L.: Application of neural networks sliding mode control in tracking control of robot manipulators. Electr. Mach. Control 13(1), 99–104 (2009)
34.
Zurück zum Zitat Hu, S.B.: Sliding Mode Control for Nonlinear Multi Joint Robot System, pp. 75–77. National Defense Industry Press, Beijing (2015) Hu, S.B.: Sliding Mode Control for Nonlinear Multi Joint Robot System, pp. 75–77. National Defense Industry Press, Beijing (2015)
35.
Zurück zum Zitat Takhmar, A., Alghooneh, M., Ali A Moosavian, S.: Chattering eliminated and stable gait planning of biped robots using a fuzzy sliding mode controller. Majlesi J. Electr. Eng. 7(1), 31–35 (2013) Takhmar, A., Alghooneh, M., Ali A Moosavian, S.: Chattering eliminated and stable gait planning of biped robots using a fuzzy sliding mode controller. Majlesi J. Electr. Eng. 7(1), 31–35 (2013)
36.
Zurück zum Zitat Zhang, J.P., Liu, K., Lin, J.F., Ma, X.B., Yu, W.D.: 4-DOF adaptive fuzzy sliding mode control of excavator. J. Mech. Eng. 46(21), 87–92 (2010)CrossRef Zhang, J.P., Liu, K., Lin, J.F., Ma, X.B., Yu, W.D.: 4-DOF adaptive fuzzy sliding mode control of excavator. J. Mech. Eng. 46(21), 87–92 (2010)CrossRef
Metadaten
Titel
Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode
verfasst von
Fei Wang
Zhi-qiang Chao
Lian-bing Huang
Hua-ying Li
Chuan-qing Zhang
Publikationsdatum
30.12.2017
Verlag
Springer US
Erschienen in
Cluster Computing / Ausgabe Sonderheft 3/2019
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-017-1538-4

Weitere Artikel der Sonderheft 3/2019

Cluster Computing 3/2019 Zur Ausgabe

Premium Partner