Skip to main content
Erschienen in: Autonomous Robots 4/2021

01.06.2021

Transfer learning of coverage functions via invariant properties in the fourier domain

verfasst von: Kuo-Shih Tseng

Erschienen in: Autonomous Robots | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The robotics community has been paying more attention to coverage functions due to their variant applications (e.g., spatial search and mapping, etc.). Due to their submodularity, greedy algorithms can find solutions with theoretical guarantees for maximizing coverage problems even if these problems are NP-hard. However, learning coverage functions is still a challenging problem since the number of function outcome for N sets is \(2^N\). Moreover, transfer learning of coverage functions is unexplored. This research focuses on the transfer learning of coverage functions via utilizing the invariant properties in the Fourier domain. The proposed algorithms based on these properties can construct Fourier support for learning coverage functions. Experiments conducted with these algorithms show that the robot can learn the coverage functions using less samples than the prior learning approaches in different environments. Experiments also show that the lossless compression rate of the proposed algorithms is up to 40 billion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agaian, S., Sarukhanyan, H., Egiazarian, K., & Astola, J. (2011). Hadamard transforms. SPIE Press. Agaian, S., Sarukhanyan, H., Egiazarian, K., & Astola, J. (2011). Hadamard transforms. SPIE Press.
Zurück zum Zitat Balcan, M. F., & Harvey, N. J. (2011). Learning submodular functions. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing. Balcan, M. F., & Harvey, N. J. (2011). Learning submodular functions. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing.
Zurück zum Zitat Balkanski, E., Breuer, A., & Singer, Y. (2020). The fast algorithm for submodular maximization. In: International Conference of Machine Learning. Balkanski, E., Breuer, A., & Singer, Y. (2020). The fast algorithm for submodular maximization. In: International Conference of Machine Learning.
Zurück zum Zitat Balkanski, E., Globerson, A., Rosenfeld, N., & Singer, Y. (2018). Learning to optimize combinatorial functions. In: International Conference of Machine Learning. Balkanski, E., Globerson, A., Rosenfeld, N., & Singer, Y. (2018). Learning to optimize combinatorial functions. In: International Conference of Machine Learning.
Zurück zum Zitat Baraniuk, R. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.CrossRef Baraniuk, R. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.CrossRef
Zurück zum Zitat Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2, 183–202.MathSciNetCrossRef Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2, 183–202.MathSciNetCrossRef
Zurück zum Zitat Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., & Siegwart, R. (2016). Receding horizon “next–best–view” planner for 3d exploration. In: IEEE International Conference on Robotics and Automation. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., & Siegwart, R. (2016). Receding horizon “next–best–view” planner for 3d exploration. In: IEEE International Conference on Robotics and Automation.
Zurück zum Zitat Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., & Siegwart, R. (2018). Receding horizon path planning for 3d exploration and surface inspection. Autonomous Robots, 42(2), 291–306.CrossRef Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., & Siegwart, R. (2018). Receding horizon path planning for 3d exploration and surface inspection. Autonomous Robots, 42(2), 291–306.CrossRef
Zurück zum Zitat Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige, K., Levine, S., & Vanhoucke, V. (2018). Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In: IEEE International Conference on Robotics and Automation Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige, K., Levine, S., & Vanhoucke, V. (2018). Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In: IEEE International Conference on Robotics and Automation
Zurück zum Zitat Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309–1332.CrossRef Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309–1332.CrossRef
Zurück zum Zitat Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transaction on Information Theory, 52(2), 489–509.MathSciNetCrossRef Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transaction on Information Theory, 52(2), 489–509.MathSciNetCrossRef
Zurück zum Zitat Charrow, B., Liu, S., Kumar, V., & Michael, N. (2015). Information-theoretic mapping using cauchy-schwarz quadratic mutual information. In: IEEE International Conference on Robotics and Automation, pp. 4791–4798. Charrow, B., Liu, S., Kumar, V., & Michael, N. (2015). Information-theoretic mapping using cauchy-schwarz quadratic mutual information. In: IEEE International Conference on Robotics and Automation, pp. 4791–4798.
Zurück zum Zitat Chekuri, C., & Pal, M. (2005). A recursive greedy algorithm for walks in directed graphs. In: 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 245–253 Chekuri, C., & Pal, M. (2005). A recursive greedy algorithm for walks in directed graphs. In: 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 245–253
Zurück zum Zitat Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., et al. (2018). Data-driven planning via imitation learning. The International Journal of Robotics Research, 37(13–14), 1632–1672.CrossRef Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., et al. (2018). Data-driven planning via imitation learning. The International Journal of Robotics Research, 37(13–14), 1632–1672.CrossRef
Zurück zum Zitat Corah, M., & Michael, N. (2019). Distributed matroid-constrained submodular maximization for multi-robot exploration: Theory and practice. Autonomous Robots, 43, 485–501.CrossRef Corah, M., & Michael, N. (2019). Distributed matroid-constrained submodular maximization for multi-robot exploration: Theory and practice. Autonomous Robots, 43, 485–501.CrossRef
Zurück zum Zitat de Moivre, A. (1718). The doctrine of chances. W. Pearson. de Moivre, A. (1718). The doctrine of chances. W. Pearson.
Zurück zum Zitat Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping (SLAM): Part i. IEEE Robotics and Automation Magazine, 13(2), 99–110.CrossRef Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping (SLAM): Part i. IEEE Robotics and Automation Magazine, 13(2), 99–110.CrossRef
Zurück zum Zitat Gabillon, V., Kveton, B., Wen, Z., Eriksson, B., & Muthukrishnan, S. (2013). Adaptive submodular maximization in bandit setting. In: Advances in Neural Information Processing Systems, 26, 2697–2705. Gabillon, V., Kveton, B., Wen, Z., Eriksson, B., & Muthukrishnan, S. (2013). Adaptive submodular maximization in bandit setting. In: Advances in Neural Information Processing Systems, 26, 2697–2705.
Zurück zum Zitat Gabillon, V., Kveton, B., Wen, Z., Eriksson, B., & Muthukrishnan, S. (2014). Large-scale optimistic adaptive submodularity. In: AAAI Conference on Artificial Intelligence, pp. 1816–1823 Gabillon, V., Kveton, B., Wen, Z., Eriksson, B., & Muthukrishnan, S. (2014). Large-scale optimistic adaptive submodularity. In: AAAI Conference on Artificial Intelligence, pp. 1816–1823
Zurück zum Zitat Golovin, D., & Krause, A. (2011). Adaptive submodularity: Theory and applications in active learning and stochastic optimization. The Journal of Artificial Intelligence Research, 42(1), 427–486.MathSciNetMATH Golovin, D., & Krause, A. (2011). Adaptive submodularity: Theory and applications in active learning and stochastic optimization. The Journal of Artificial Intelligence Research, 42(1), 427–486.MathSciNetMATH
Zurück zum Zitat Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017). Reinforcement learning with deep energy-based policies. In: International Conference on Machine Learning. Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017). Reinforcement learning with deep energy-based policies. In: International Conference on Machine Learning.
Zurück zum Zitat Hammer, P. L., & Rudeanu, S. (1968). Boolean methods in operations research and related areas. Springer. Hammer, P. L., & Rudeanu, S. (1968). Boolean methods in operations research and related areas. Springer.
Zurück zum Zitat Hollinger, G., Choudhuri, C., Mitra, U., & Sukhatme, G. S. (2013). Squared error distortion metrics for motion planning in robotic sensor networks. In: Proceedings International Workshop Wireless Networking for Unmanned Autonomous Vehicles, pp. 1426–1431 Hollinger, G., Choudhuri, C., Mitra, U., & Sukhatme, G. S. (2013). Squared error distortion metrics for motion planning in robotic sensor networks. In: Proceedings International Workshop Wireless Networking for Unmanned Autonomous Vehicles, pp. 1426–1431
Zurück zum Zitat Hollinger, G., & Singh, S. (2008). Proofs and experiments in scalable, near-optimal search by multiple robots. In: Robotics: Science and Systems, 1426–1431. Hollinger, G., & Singh, S. (2008). Proofs and experiments in scalable, near-optimal search by multiple robots. In: Robotics: Science and Systems, 1426–1431.
Zurück zum Zitat Khuller, S., Moss, A., & Naor, J. (1999). The budgeted maximum coverage problem. Information Processing Letters, 70(1), 39–45.MathSciNetCrossRef Khuller, S., Moss, A., & Naor, J. (1999). The budgeted maximum coverage problem. Information Processing Letters, 70(1), 39–45.MathSciNetCrossRef
Zurück zum Zitat Konolige, K. (1997). Improved occupancy grids for map building. Autonomous Robots, 4, 351–367.CrossRef Konolige, K. (1997). Improved occupancy grids for map building. Autonomous Robots, 4, 351–367.CrossRef
Zurück zum Zitat Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. The Journal of Machine Learning Research, 9, 235–284.MATH Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. The Journal of Machine Learning Research, 9, 235–284.MATH
Zurück zum Zitat Lu, B. X., & Tseng, K. S. (2020). 3d map exploration via learning submodular functions in the fourier domain. In: International Conference on Unmanned Aircraft Systems. Lu, B. X., & Tseng, K. S. (2020). 3d map exploration via learning submodular functions in the fourier domain. In: International Conference on Unmanned Aircraft Systems.
Zurück zum Zitat Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14, 265–294.MathSciNetCrossRef Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14, 265–294.MathSciNetCrossRef
Zurück zum Zitat Pascal, B. (1665). Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matière. Guillaume Desprez. Pascal, B. (1665). Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matière. Guillaume Desprez.
Zurück zum Zitat Pratt, L.Y. (1993). Discriminability-based transfer between neural networks. In: Advances in Neural Information Processing Systems, pp. 204–211. Pratt, L.Y. (1993). Discriminability-based transfer between neural networks. In: Advances in Neural Information Processing Systems, pp. 204–211.
Zurück zum Zitat Rajeswaran, A., Ghotra, S., Ravindran, B., & Levine, S. (2017). Epopt: Learning robust neural network policies using model ensembles. In: International Conference on Learning Representations. Rajeswaran, A., Ghotra, S., Ravindran, B., & Levine, S. (2017). Epopt: Learning robust neural network policies using model ensembles. In: International Conference on Learning Representations.
Zurück zum Zitat Rauhut, H. (2010). Compressive sensing and structured random matrices. Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series on Computational and Applied Mathematics, 9, pp. 1–94, deGruyter. Rauhut, H. (2010). Compressive sensing and structured random matrices. Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series on Computational and Applied Mathematics, 9, pp. 1–94, deGruyter.
Zurück zum Zitat Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B. (2010). Cognitive-based adaptive control for cooperative multi-robot coverage. In: IEEE/RSJ International Intelligent Robots and Systems, pp. 3314–3320. Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B. (2010). Cognitive-based adaptive control for cooperative multi-robot coverage. In: IEEE/RSJ International Intelligent Robots and Systems, pp. 3314–3320.
Zurück zum Zitat Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., & Hadsell, R. (2016). Progress neural networks. Arxiv. Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., & Hadsell, R. (2016). Progress neural networks. Arxiv.
Zurück zum Zitat Qaisar, S., Islamabad, P., Bilal, R., Iqbal, W., & Naureen, M. (2013). Compressive sensing: From theory to applications, a survey. Journal of Communications and Networks, 15(5), 443–456.CrossRef Qaisar, S., Islamabad, P., Bilal, R., Iqbal, W., & Naureen, M. (2013). Compressive sensing: From theory to applications, a survey. Journal of Communications and Networks, 15(5), 443–456.CrossRef
Zurück zum Zitat Sadeghi, F., & Levine, S. (2017). Cad2rl: Real single image flight without a single real image. In: Robotics: Science and System. Sadeghi, F., & Levine, S. (2017). Cad2rl: Real single image flight without a single real image. In: Robotics: Science and System.
Zurück zum Zitat Schmidt, M. (2005). Least squares optimization with l1-norm regularization. Schmidt, M. (2005). Least squares optimization with l1-norm regularization.
Zurück zum Zitat Singh, A., Krause, A., Guestrin, C., Kaiser, W., & Batalin, M. (2007). Efficient planning of informative paths for multiple robots. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2204–2211. Singh, A., Krause, A., Guestrin, C., Kaiser, W., & Batalin, M. (2007). Efficient planning of informative paths for multiple robots. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2204–2211.
Zurück zum Zitat Stobbe, P., & Krause, A. (2012). Learning fourier sparse set functions. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, pp. 1125–1133. Stobbe, P., & Krause, A. (2012). Learning fourier sparse set functions. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, pp. 1125–1133.
Zurück zum Zitat Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.MathSciNetMATH Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.MathSciNetMATH
Zurück zum Zitat Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain randomization for transferring deep neural net works from simulation to the real world. In: IEEE/RSJ International Intelligent Robots and Systems. pp. 23–30. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain randomization for transferring deep neural net works from simulation to the real world. In: IEEE/RSJ International Intelligent Robots and Systems. pp. 23–30.
Zurück zum Zitat Tsai, Y. C., Lu, B. X., & Tseng, K. S. (2019). Spatial search via adaptive submodularity and deep learning. In: IEEE International Symposium on Safety: Security, and Rescue Robotics. Tsai, Y. C., Lu, B. X., & Tseng, K. S. (2019). Spatial search via adaptive submodularity and deep learning. In: IEEE International Symposium on Safety: Security, and Rescue Robotics.
Zurück zum Zitat Tsai, Y. C., & Tseng, K. S. (2020). Deep compressed sensing for learning submodular functions. Sensors, 20(9), 2591.CrossRef Tsai, Y. C., & Tseng, K. S. (2020). Deep compressed sensing for learning submodular functions. Sensors, 20(9), 2591.CrossRef
Zurück zum Zitat Tseng, K.S. (2016). Learning in human and robot search: Subgoal, submodularity, and sparsity. University of Minnesota Ph. D. dissertation. Tseng, K.S. (2016). Learning in human and robot search: Subgoal, submodularity, and sparsity. University of Minnesota Ph. D. dissertation.
Zurück zum Zitat Tzeng, E., Devin, C., Hoffman, J., Finn, C., Abbeel, P., Levine, S., Saenko, K., & Darrell, T. (2015). Adapting deep visuomotor representations with weak pairwise constraints. arXiv. Tzeng, E., Devin, C., Hoffman, J., Finn, C., Abbeel, P., Levine, S., Saenko, K., & Darrell, T. (2015). Adapting deep visuomotor representations with weak pairwise constraints. arXiv.
Zurück zum Zitat Tzoumas, V., Jadbabaie, A., & Pappas, G.J. (2019). Robust and adaptive sequential submodular optimization. arXiv. Tzoumas, V., Jadbabaie, A., & Pappas, G.J. (2019). Robust and adaptive sequential submodular optimization. arXiv.
Zurück zum Zitat Zhou, L., Tzoumas, V., Pappas, G.J., & Tokekar, P. (2019). Distributed attack-robust submodular maximization for multi-robot planning. arXiv. Zhou, L., Tzoumas, V., Pappas, G.J., & Tokekar, P. (2019). Distributed attack-robust submodular maximization for multi-robot planning. arXiv.
Metadaten
Titel
Transfer learning of coverage functions via invariant properties in the fourier domain
verfasst von
Kuo-Shih Tseng
Publikationsdatum
01.06.2021
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2021
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-021-09982-9

Weitere Artikel der Ausgabe 4/2021

Autonomous Robots 4/2021 Zur Ausgabe

Neuer Inhalt