Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.03.2020 | Original Article

Transforming view of medical images using deep learning

Zeitschrift:
Neural Computing and Applications
Autoren:
Nitesh Pradhan, Vijaypal Singh Dhaka, Geeta Rani, Himanshu Chaudhary
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Since the last decade, there is a significant change in the procedure of medical diagnosis and treatment. Specifically, when internal tissues, organs such as heart, lungs, brain, kidneys and bones are the target regions, a doctor recommends ‘computerized tomography’ scan and/or magnetic resonance imaging to get a clear picture of the damaged portion of an organ or a bone. This is important for correct examination of the medical deformities such as bone fracture, arthritis, and brain tumor. It ensures prescription of the best possible treatment. But ‘computerized tomography’ scan exposes a patient to high ionizing radiation. These rays make a person more prone to cancer. Magnetic resonance imaging requires a strong magnetic field. Thus, it becomes impractical for patients with implants in their body. Moreover, the high cost makes the above-stated techniques unaffordable for low economy class of society. The above-mentioned challenges of ‘computerized tomography’ scan and magnetic resonance imaging motivate researchers to focus on developing a technique for conversion of 2-dimensional view of medical images into their corresponding multiple views. In this manuscript, the authors design and develop a deep learning model that makes an effective use of conditional generative adversarial network, an extension of generative adversarial network for the transformation of 2-dimensional views of human bone into the corresponding multiple views at different angles. The model will prove useful for both doctors and patients.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise