Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2020

13.02.2020

Transient Plastic Flow and Phase Dissolution During Hot Compression of α/β Titanium Alloys

verfasst von: S. L. Semiatin, N. C. Levkulich, C. A. Heck, A. E. Mann, N. Bozzolo, A. L. Pilchak, J. S. Tiley

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transients in plastic flow behavior and the kinetics of dynamic dissolution of α particles were established via isothermal, hot compression testing of Ti-6Al-4V (Ti64) and Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti6242S). For this purpose, samples were preheated at a low subtransus temperature at which the volume fraction of α was ~ 0.90, heated at a fixed rate to one of two higher temperatures, held for a time between 0 and 900 seconds, and then upset to a 2:1 reduction using a strain rate of 0.01, 0.1, or 1 s−1. For a given alloy, test temperature, and strain rate, the flow stress decreased with increasing hold time. The observations were interpreted in terms of various models of plastic flow and microstructure evolution. The plastic-flow behavior of the two-phase microstructures was analyzed using approaches based on isostrain (upper-bound), self-consistent (SC), and isostress (lower-bound) approaches coupled with the measured (transient/non-equilibrium) phase fractions/phase compositions. The isostrain and SC methods both provided reasonable estimates of the observed flow stresses; the isostress method greatly under-predicted the measurements. Microstructure models comprised diffusion-based analyses of the dissolution of α particles into the β matrix both statically (during heating to test temperature and holding prior to deformation) and dynamically (during deformation). Static dissolution predictions showed good agreement with measurements. A comparison of static and dynamic dissolution behaviors revealed that concurrent deformation led to an enhancement of diffusion rates by a factor of approximately 8 or 4 for Ti64 and Ti6242S, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Altan, F.W. Boulger, J.R. Becker, N. Akgerman, and H.J. Henning: Forging Equipment, Materials, and Practices. Report MCIC-HB-03, Metals and Ceramics Information Center, Battelle’s Columbus Laboratories, Columbus, OH, 1973. T. Altan, F.W. Boulger, J.R. Becker, N. Akgerman, and H.J. Henning: Forging Equipment, Materials, and Practices. Report MCIC-HB-03, Metals and Ceramics Information Center, Battelle’s Columbus Laboratories, Columbus, OH, 1973.
2.
Zurück zum Zitat A.M. Sabroff, F.W. Boulger, and H.J. Henning: Forging Materials and Practices, Rheinhold Book Company, New York, 1968. A.M. Sabroff, F.W. Boulger, and H.J. Henning: Forging Materials and Practices, Rheinhold Book Company, New York, 1968.
3.
Zurück zum Zitat T. Altan: Metal Forming: Fundamentals and Applications, American Society for Metals, Materials Park, OH, 1983. T. Altan: Metal Forming: Fundamentals and Applications, American Society for Metals, Materials Park, OH, 1983.
4.
Zurück zum Zitat D.D. Kautz: in ASM Handbook Volume 6A: Welding Fundamentals and Processes, ASM International, Materials Park, OH, 2011, pp. 179–85. D.D. Kautz: in ASM Handbook Volume 6A: Welding Fundamentals and Processes, ASM International, Materials Park, OH, 2011, pp. 179–85.
5.
Zurück zum Zitat M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, and A.B. Ismail: Sci. Technol. Welding Joining, 2010, vol. 15, pp. 534–58. M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, and A.B. Ismail: Sci. Technol. Welding Joining, 2010, vol. 15, pp. 534–58.
6.
Zurück zum Zitat A. Chamanfar, M. Jahazi, and J. Cormier: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1639-1669.CrossRef A. Chamanfar, M. Jahazi, and J. Cormier: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1639-1669.CrossRef
7.
Zurück zum Zitat A.R. McAndrew, P.A. Colegrove, C. Buhr, B.C.D. Flipo, and A. Vairis: Prog. Mater. Sci., 2018, vol. 92, pp. 225-257.CrossRef A.R. McAndrew, P.A. Colegrove, C. Buhr, B.C.D. Flipo, and A. Vairis: Prog. Mater. Sci., 2018, vol. 92, pp. 225-257.CrossRef
8.
Zurück zum Zitat L. Wang, M. Preuss, P.J. Withers, G. Baxter, and P. Wilson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 513-523.CrossRef L. Wang, M. Preuss, P.J. Withers, G. Baxter, and P. Wilson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 513-523.CrossRef
10.
Zurück zum Zitat L.B. Yang, J.-C. Gebelin, and R.C. Reed: Mater. Sci. Techn., 2011, vol. 27, pp. 1249-1264.CrossRef L.B. Yang, J.-C. Gebelin, and R.C. Reed: Mater. Sci. Techn., 2011, vol. 27, pp. 1249-1264.CrossRef
11.
Zurück zum Zitat O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, and C. Woodward: Metall. and Mater. Trans. A, 2014, vol. 45A, pp. 5545-5561.CrossRef O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, and C. Woodward: Metall. and Mater. Trans. A, 2014, vol. 45A, pp. 5545-5561.CrossRef
12.
Zurück zum Zitat D.W. Mahaffey, O.N. Senkov, R. Shivpuri, and S.L. Semiatin: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3981-4000.CrossRef D.W. Mahaffey, O.N. Senkov, R. Shivpuri, and S.L. Semiatin: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3981-4000.CrossRef
13.
Zurück zum Zitat R. Turner, J.-C. Gebelin, R.M. Ward, and R.C. Reed: Acta Mater., 2011, vol. 59, pp. 3792-3803.CrossRef R. Turner, J.-C. Gebelin, R.M. Ward, and R.C. Reed: Acta Mater., 2011, vol. 59, pp. 3792-3803.CrossRef
14.
Zurück zum Zitat C. Buhr, P.A. Colegrove, and A.R. McAndrew: J. Mater. Proc. Techn., 2018, vol. 252, pp. 849-858.CrossRef C. Buhr, P.A. Colegrove, and A.R. McAndrew: J. Mater. Proc. Techn., 2018, vol. 252, pp. 849-858.CrossRef
15.
Zurück zum Zitat A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, M.J. Russell, and L.A. Lee: Mater. and Design, 2015, vol. 87, pp. 1087-1099.CrossRef A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, M.J. Russell, and L.A. Lee: Mater. and Design, 2015, vol. 87, pp. 1087-1099.CrossRef
16.
Zurück zum Zitat G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds.: Handbook of Workability and Process Design, ASM International, Materials Park, OH, 2003. G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds.: Handbook of Workability and Process Design, ASM International, Materials Park, OH, 2003.
17.
Zurück zum Zitat G. Shen, S.L. Semiatin, E. Kropp, and T. Altan: J. Mat. Proc. Tech., 1992, vol. 33, pp. 125-139.CrossRef G. Shen, S.L. Semiatin, E. Kropp, and T. Altan: J. Mat. Proc. Tech., 1992, vol. 33, pp. 125-139.CrossRef
18.
Zurück zum Zitat P.D. Nicolaou, R.E. Bailey, and S.L. Semiatin: in Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2003, pp. 68–85. P.D. Nicolaou, R.E. Bailey, and S.L. Semiatin: in Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2003, pp. 68–85.
19.
20.
21.
Zurück zum Zitat H.G. Suzuki and D. Eylon: Mater. Sci. Eng. A, 1998, vol. A243, pp. 126-133.CrossRef H.G. Suzuki and D. Eylon: Mater. Sci. Eng. A, 1998, vol. A243, pp. 126-133.CrossRef
22.
Zurück zum Zitat F.F. Noecker II and J.N. DuPont: Weld. J., 2009, vol. 88 (#1), pp. 7s–20s. F.F. Noecker II and J.N. DuPont: Weld. J., 2009, vol. 88 (#1), pp. 7s–20s.
23.
Zurück zum Zitat S. Shi, J.C. Lippold, and J. Ramirez: Weld. J., 2010, vol. 89 (#10), pp. 210s–17s. S. Shi, J.C. Lippold, and J. Ramirez: Weld. J., 2010, vol. 89 (#10), pp. 210s–17s.
24.
Zurück zum Zitat S.S. Babu, J. Livingston, and J.C. Lippold: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3577-3591.CrossRef S.S. Babu, J. Livingston, and J.C. Lippold: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3577-3591.CrossRef
25.
Zurück zum Zitat M. Saby, E. Massoni, and N. Bozzolo: Mater. Charact., 2014, pp. 88–92. M. Saby, E. Massoni, and N. Bozzolo: Mater. Charact., 2014, pp. 88–92.
26.
Zurück zum Zitat S.L. Semiatin, F. Montheillet, G. Shen, and J.J. Jonas: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2719-2727.CrossRef S.L. Semiatin, F. Montheillet, G. Shen, and J.J. Jonas: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2719-2727.CrossRef
27.
Zurück zum Zitat P. Vo, M. Jahazi, S. Yue, and P. Bocher: Mater. Sci. Eng. A, 2007, vol. A447, pp. 99-110.CrossRef P. Vo, M. Jahazi, S. Yue, and P. Bocher: Mater. Sci. Eng. A, 2007, vol. A447, pp. 99-110.CrossRef
28.
Zurück zum Zitat L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665-1672.CrossRef L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665-1672.CrossRef
29.
Zurück zum Zitat S.L. Semiatin, M. Obstalecki, E.J. Payton, A.L. Pilchak, P.A. Shade, N.C. Levkulich, J.M. Shank, D.C. Pagan, F. Zhang, and J.S. Tiley: Metall. Mater. Trans. A, 2019, vol.50A, pp. 2356-2370.CrossRef S.L. Semiatin, M. Obstalecki, E.J. Payton, A.L. Pilchak, P.A. Shade, N.C. Levkulich, J.M. Shank, D.C. Pagan, F. Zhang, and J.S. Tiley: Metall. Mater. Trans. A, 2019, vol.50A, pp. 2356-2370.CrossRef
30.
Zurück zum Zitat S.L. Semiatin, T.M. Lehner, J.D. Miller, R.D. Doherty, and D.U. Furrer: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 910-921.CrossRef S.L. Semiatin, T.M. Lehner, J.D. Miller, R.D. Doherty, and D.U. Furrer: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 910-921.CrossRef
31.
Zurück zum Zitat R. Castro and L. Seraphin: Mém. Sci. Rev. Metall., 1966, vol. 63, pp. 1025-1058.CrossRef R. Castro and L. Seraphin: Mém. Sci. Rev. Metall., 1966, vol. 63, pp. 1025-1058.CrossRef
32.
Zurück zum Zitat S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-975.CrossRef S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-975.CrossRef
33.
Zurück zum Zitat S.L. Semiatin, N.C. Levkulich, A.R.C. Gerlt, E.J. Payton, J.S. Tiley, F. Zhang, R.A. MacKay, R.V. Miner, and T.P. Gabb: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2289- 2301.CrossRef S.L. Semiatin, N.C. Levkulich, A.R.C. Gerlt, E.J. Payton, J.S. Tiley, F. Zhang, R.A. MacKay, R.V. Miner, and T.P. Gabb: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2289- 2301.CrossRef
34.
Zurück zum Zitat H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, 1982. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, 1982.
35.
Zurück zum Zitat S.L. Semiatin, T.M. Brown, T.A. Goff, P.N. Fagin, D.R. Barker, R.E. Turner, J.M. Murry, J.D. Miller, and F. Zhang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3015-3018.CrossRef S.L. Semiatin, T.M. Brown, T.A. Goff, P.N. Fagin, D.R. Barker, R.E. Turner, J.M. Murry, J.D. Miller, and F. Zhang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3015-3018.CrossRef
36.
Zurück zum Zitat B. Guo, S.L. Semiatin, J. Lian, B. Sun, and J.J. Jonas: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1450-1454.CrossRef B. Guo, S.L. Semiatin, J. Lian, B. Sun, and J.J. Jonas: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1450-1454.CrossRef
37.
38.
Zurück zum Zitat H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393-408.CrossRef H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393-408.CrossRef
39.
Zurück zum Zitat H.B. Aaron and G.R. Kotler: Metal Sci. Journal, 1970, vol. 4, 222-225.CrossRef H.B. Aaron and G.R. Kotler: Metal Sci. Journal, 1970, vol. 4, 222-225.CrossRef
40.
Zurück zum Zitat S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377-2386.CrossRef S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377-2386.CrossRef
41.
Zurück zum Zitat R.D. Doherty: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland, Amsterdam, 1996, ch. 15. R.D. Doherty: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland, Amsterdam, 1996, ch. 15.
42.
Zurück zum Zitat I. Weiss and J.J. Jonas: Metall. Trans. A, 1979, vol. 10A, pp. 831–40.CrossRef I. Weiss and J.J. Jonas: Metall. Trans. A, 1979, vol. 10A, pp. 831–40.CrossRef
Metadaten
Titel
Transient Plastic Flow and Phase Dissolution During Hot Compression of α/β Titanium Alloys
verfasst von
S. L. Semiatin
N. C. Levkulich
C. A. Heck
A. E. Mann
N. Bozzolo
A. L. Pilchak
J. S. Tiley
Publikationsdatum
13.02.2020
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-05673-9

Weitere Artikel der Ausgabe 5/2020

Metallurgical and Materials Transactions A 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.