Skip to main content
Erschienen in: Adsorption 6/2018

06.08.2018

Transition metals adsorption and conductivity modification in carbon nanotubes: analytical modeling and DFT study

verfasst von: Bahar Meshginqalam, Sholeh Alaei

Erschienen in: Adsorption | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigated the transition metals adsorption effect on the conductivity, density of states and carrier density of carbon nanotubes. We find that the electronic properties of CNTs are modulated in the presence of transition metal molecules. Both quasi-metallic and semiconductor behavior in the presence of Ag and Ti molecules are observed, respectively. The model is developed from tight-binding method, first-principles simulations are based on the density functional theory and non-equilibrium Green’s function method. The results of both approaches are in good agreement with each other. Our study reports the high sensitivity of CNTs to transition metal molecules and suggests that their adsorption on CNTs play significant role in modifying electronic behavior and conductivity of CNTs, so improves their potential for spintronics and sensing applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmadi, M.T., Johari, Z., Amin, N.A., Mousavi, S.M., Ismail, R.: Carbon nanotube conductance model in parabolic band structure. In Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE 2010), Malacca, vol. 82, pp. 256 (2010) Ahmadi, M.T., Johari, Z., Amin, N.A., Mousavi, S.M., Ismail, R.: Carbon nanotube conductance model in parabolic band structure. In Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE 2010), Malacca, vol. 82, pp. 256 (2010)
Zurück zum Zitat Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)CrossRefPubMed Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)CrossRefPubMed
Zurück zum Zitat Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)CrossRef Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)CrossRef
Zurück zum Zitat Bulusheva, L.G., Okotrub, A.V., Romanov, D.A., Tomanek, D.: Electronic structure of (n,0) zigzag carbon nanotubes: cluster and crystal approach. J. Phys. Chem. A 102, 975–981 (1998)CrossRef Bulusheva, L.G., Okotrub, A.V., Romanov, D.A., Tomanek, D.: Electronic structure of (n,0) zigzag carbon nanotubes: cluster and crystal approach. J. Phys. Chem. A 102, 975–981 (1998)CrossRef
Zurück zum Zitat Chang, S.W., Hazra, J., Amer, M., Kapadia, R., Cronin, S.B.: A comparison of photocurrent mechanisms in quasi-metallic and semiconducting carbon nanotube pn-junctions. ACS Nano 9(12), 11551–11556 (2015)CrossRefPubMed Chang, S.W., Hazra, J., Amer, M., Kapadia, R., Cronin, S.B.: A comparison of photocurrent mechanisms in quasi-metallic and semiconducting carbon nanotube pn-junctions. ACS Nano 9(12), 11551–11556 (2015)CrossRefPubMed
Zurück zum Zitat Choi, H.J., Ihm, J., Louie, S.G., Cohen, M.L.: Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917–2920 (2000)CrossRefPubMed Choi, H.J., Ihm, J., Louie, S.G., Cohen, M.L.: Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917–2920 (2000)CrossRefPubMed
Zurück zum Zitat Collins, P., Bradley, K., Ishigami, M., Zettl, A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000)CrossRefPubMed Collins, P., Bradley, K., Ishigami, M., Zettl, A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000)CrossRefPubMed
Zurück zum Zitat Crespi, V.H., Cohen, M.L., Rubio, A.: In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett. 79, 2093–2096 (1997)CrossRef Crespi, V.H., Cohen, M.L., Rubio, A.: In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett. 79, 2093–2096 (1997)CrossRef
Zurück zum Zitat Dandeliya, S., Khan, Md.S., Srivastava, A.: Electron transport in ammonia adsorbed functionalized carbon nanotube. J. Nanoelectron. Optoelectron. 13, 3 (2018)CrossRef Dandeliya, S., Khan, Md.S., Srivastava, A.: Electron transport in ammonia adsorbed functionalized carbon nanotube. J. Nanoelectron. Optoelectron. 13, 3 (2018)CrossRef
Zurück zum Zitat Datta, S., Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRef Datta, S., Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRef
Zurück zum Zitat Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996) Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)
Zurück zum Zitat Gunlycke, D., Areshkin, D., White, C.: Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104:1–142104:3 (2007)CrossRef Gunlycke, D., Areshkin, D., White, C.: Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104:1–142104:3 (2007)CrossRef
Zurück zum Zitat Inoue, S., Kokabu, T., Matsumura, Y.: Effects of physical and chemical adsorption on the electric conductance of carbon nanotube films. AIP Adv. 8, 015222 (2018)CrossRef Inoue, S., Kokabu, T., Matsumura, Y.: Effects of physical and chemical adsorption on the electric conductance of carbon nanotube films. AIP Adv. 8, 015222 (2018)CrossRef
Zurück zum Zitat Ismail, R.B., Ahmadi, M.T., Anwar, S.: Advanced Nanoelectronics. Taylor & Francis, Boca Raton (2013) Ismail, R.B., Ahmadi, M.T., Anwar, S.: Advanced Nanoelectronics. Taylor & Francis, Boca Raton (2013)
Zurück zum Zitat Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)CrossRefPubMed Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)CrossRefPubMed
Zurück zum Zitat Li, Y.F., Zhou, Z., Yu, G.T., Chen, W., Chen, Z.F.: CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C 114, 6250 (2010)CrossRef Li, Y.F., Zhou, Z., Yu, G.T., Chen, W., Chen, Z.F.: CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C 114, 6250 (2010)CrossRef
Zurück zum Zitat Lu, Y.H., Zhou, M., Zhang, C., Feng, Y.P.: Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113, 20156 (2009)CrossRef Lu, Y.H., Zhou, M., Zhang, C., Feng, Y.P.: Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113, 20156 (2009)CrossRef
Zurück zum Zitat Lucci, M., Reale, A., Di Carlo, A., Orlanducci, S., Tamburri, E., Terranova, M.L., Davoli, I., Di Natale, C., D’Amico, A., Paolesse, R.: Optimization of a NOx gas sensor based on single walled carbon nanotubes. Sens. Actuators B 118(1–2), 226–231 (2006)CrossRef Lucci, M., Reale, A., Di Carlo, A., Orlanducci, S., Tamburri, E., Terranova, M.L., Davoli, I., Di Natale, C., D’Amico, A., Paolesse, R.: Optimization of a NOx gas sensor based on single walled carbon nanotubes. Sens. Actuators B 118(1–2), 226–231 (2006)CrossRef
Zurück zum Zitat Meshginqalam, B., Alaei, S.: Investigation of molecular adsorption effect on the electrical properties of CNT-based sensors. IEEE Sens. J. 17, 3776 (2017)CrossRef Meshginqalam, B., Alaei, S.: Investigation of molecular adsorption effect on the electrical properties of CNT-based sensors. IEEE Sens. J. 17, 3776 (2017)CrossRef
Zurück zum Zitat Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., McGill, R.A.: Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003)CrossRef Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., McGill, R.A.: Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003)CrossRef
Zurück zum Zitat Perdew, J.P.: Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys. Rev. Lett. 55, 1665–1668 (1985)CrossRefPubMed Perdew, J.P.: Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys. Rev. Lett. 55, 1665–1668 (1985)CrossRefPubMed
Zurück zum Zitat Perdew, J.P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822 (1986)CrossRef Perdew, J.P.: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822 (1986)CrossRef
Zurück zum Zitat Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)CrossRef Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)CrossRef
Zurück zum Zitat Perdew, J.P., Yue, W.: Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800–8802 (1986)CrossRef Perdew, J.P., Yue, W.: Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800–8802 (1986)CrossRef
Zurück zum Zitat Pourasl, A.H., Ahmadi, M.T., Ismail, R., Gharaei, N.: Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance. Adsorption 23, 767–777 (2017)CrossRef Pourasl, A.H., Ahmadi, M.T., Ismail, R., Gharaei, N.: Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance. Adsorption 23, 767–777 (2017)CrossRef
Zurück zum Zitat Quang, N.H., Van Trinh, M., Lee, B.-H., Huh, J.-S.: Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens. Actuators B 113(1), 341–346 (2006)CrossRef Quang, N.H., Van Trinh, M., Lee, B.-H., Huh, J.-S.: Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens. Actuators B 113(1), 341–346 (2006)CrossRef
Zurück zum Zitat Rao, C.N.R., Voggu, R.: Charge-transfer with graphene and nanotubes. Materials Today 13, 9 (2010)CrossRef Rao, C.N.R., Voggu, R.: Charge-transfer with graphene and nanotubes. Materials Today 13, 9 (2010)CrossRef
Zurück zum Zitat Salaway, R.N., Zhigilei, L.V.: Thermal conductance of carbon nanotube contacts: molecular dynamics simulations and general description of the contact conductance. Phys. Rev. B 94, 014308 (2016)CrossRef Salaway, R.N., Zhigilei, L.V.: Thermal conductance of carbon nanotube contacts: molecular dynamics simulations and general description of the contact conductance. Phys. Rev. B 94, 014308 (2016)CrossRef
Zurück zum Zitat Serp, P., Machado, B.: Nanostructures Carbon Materials for Catalysis. Royal Society of Chemistry, Cambridge (2015) Serp, P., Machado, B.: Nanostructures Carbon Materials for Catalysis. Royal Society of Chemistry, Cambridge (2015)
Zurück zum Zitat Tombros, T., Jozsa, C., Popinciuc, M., Jonkman, H.J., Wees, B.J.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571 (2007)CrossRefPubMed Tombros, T., Jozsa, C., Popinciuc, M., Jonkman, H.J., Wees, B.J.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571 (2007)CrossRefPubMed
Zurück zum Zitat Valencia, H., Gil, A., Frapper, G.: Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis. J. Phys. Chem. C 114, 14141–14153 (2010)CrossRef Valencia, H., Gil, A., Frapper, G.: Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis. J. Phys. Chem. C 114, 14141–14153 (2010)CrossRef
Zurück zum Zitat Wang, D., Yu, Z., McKernan, S., Burke, P.J.: Ultrahigh frequency carbon nanotube transistor based on a single nanotube. IEEE Trans. Nanotechnol. 6, 400–403 (2007)CrossRef Wang, D., Yu, Z., McKernan, S., Burke, P.J.: Ultrahigh frequency carbon nanotube transistor based on a single nanotube. IEEE Trans. Nanotechnol. 6, 400–403 (2007)CrossRef
Zurück zum Zitat Xu, K., Wu, C., Tian, X., Liu, J., Li, M., Zhang, Y., Dong, Z.: Single-walled carbon nanotube-based gas sensors for NO2 detection. Integr. Ferroelectr. 135, 132–137 (2012)CrossRef Xu, K., Wu, C., Tian, X., Liu, J., Li, M., Zhang, Y., Dong, Z.: Single-walled carbon nanotube-based gas sensors for NO2 detection. Integr. Ferroelectr. 135, 132–137 (2012)CrossRef
Zurück zum Zitat Yanning, W., Hui, Z., Yinsheng, H., Kaiyin, Z., Rongbao, L.: Transport properties of double-walled carbon nanotubes and carbon boronitride heteronanotubes. Carbon 95, 220–227 (2015)CrossRef Yanning, W., Hui, Z., Yinsheng, H., Kaiyin, Z., Rongbao, L.: Transport properties of double-walled carbon nanotubes and carbon boronitride heteronanotubes. Carbon 95, 220–227 (2015)CrossRef
Zurück zum Zitat Yazyev, O.Y., Katsnelson, M.I.: Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2009)CrossRef Yazyev, O.Y., Katsnelson, M.I.: Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2009)CrossRef
Zurück zum Zitat Zaporotskova, I.V., Boroznina, N.P., Parkhomenko, Y.N., Kozhitov, L.V.: Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRef Zaporotskova, I.V., Boroznina, N.P., Parkhomenko, Y.N., Kozhitov, L.V.: Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRef
Zurück zum Zitat Zhang, J., Boyd, A., Tselev, A., Paranjape, M., Barbara, P.: Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Appl. Phys. Lett. 88(12), 123112 (2006)CrossRef Zhang, J., Boyd, A., Tselev, A., Paranjape, M., Barbara, P.: Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Appl. Phys. Lett. 88(12), 123112 (2006)CrossRef
Zurück zum Zitat Zhou, M., Lu, Y.H., Cai, Y.Q., Zhang, C., Feng, Y.P.: Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 22, 385502 (2011)CrossRefPubMed Zhou, M., Lu, Y.H., Cai, Y.Q., Zhang, C., Feng, Y.P.: Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 22, 385502 (2011)CrossRefPubMed
Metadaten
Titel
Transition metals adsorption and conductivity modification in carbon nanotubes: analytical modeling and DFT study
verfasst von
Bahar Meshginqalam
Sholeh Alaei
Publikationsdatum
06.08.2018
Verlag
Springer US
Erschienen in
Adsorption / Ausgabe 6/2018
Print ISSN: 0929-5607
Elektronische ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-018-9964-z

Weitere Artikel der Ausgabe 6/2018

Adsorption 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.