Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2009

01.12.2009

Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

verfasst von: K. Sampath

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Weldalite® is a Registered Trademark of Lockheed Martin Corporation.
 
2
Joint efficiency is a ratio of the UTS of the weld (as determined from a transverse-weld tensile test or an all-weld metal tensile test) to the UTS of the base metal. A joint efficiency less than 100% indicates an “undermatched” weldment, while a joint efficiency over 100% indicates an “overmatched” weldment. Commonly, most aluminum weldments are undermatched in the as-welded condition.
 
Literatur
1.
Zurück zum Zitat Cassada III and A. William, High Strength, High Toughness Aluminum-Copper-Magnesium-Type Aluminum Alloy, U.S. Patent 5,593,516, Jan 1997 Cassada III and A. William, High Strength, High Toughness Aluminum-Copper-Magnesium-Type Aluminum Alloy, U.S. Patent 5,593,516, Jan 1997
2.
Zurück zum Zitat T.D. Wolfe and S.A. Gedeon, “Weldability of 2219-T851 and 2519-T87 Aluminum Armor Alloys for Use in Army Vehicle Systems,” Report No. A692481, Material Technology Laboratory, Watertown, MA, June 1987 T.D. Wolfe and S.A. Gedeon, “Weldability of 2219-T851 and 2519-T87 Aluminum Armor Alloys for Use in Army Vehicle Systems,” Report No. A692481, Material Technology Laboratory, Watertown, MA, June 1987
3.
Zurück zum Zitat J.H. Devletian, S.M. DeVincent, and S.A. Gedeon, “Weldability of 2519-T87 Aluminum Alloy,” Report No. A915302, Material Technology Laboratory, Watertown, MA, Dec 1988 J.H. Devletian, S.M. DeVincent, and S.A. Gedeon, “Weldability of 2519-T87 Aluminum Alloy,” Report No. A915302, Material Technology Laboratory, Watertown, MA, Dec 1988
4.
Zurück zum Zitat S.M. Grendahl, R.J. Squillacioti, D.J. Snoha, and C.E. Miller, “Mechanical and Ballistic Data for A12519 Plate, Forgings, and Weldments,” Report No. A704883, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, Apr 2001 S.M. Grendahl, R.J. Squillacioti, D.J. Snoha, and C.E. Miller, “Mechanical and Ballistic Data for A12519 Plate, Forgings, and Weldments,” Report No. A704883, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, Apr 2001
5.
Zurück zum Zitat Campbell, G., and Stotler, T. “Friction Stir Welding of Armor Grade Aluminum Plate”, Welding Journal, 78(12), 45–48, Dec (1999). Campbell, G., and Stotler, T. “Friction Stir Welding of Armor Grade Aluminum Plate”, Welding Journal, 78(12), 45–48, Dec (1999).
6.
Zurück zum Zitat Nickodemus, G H; Kramer, L S; Pickens, J R; Burkins, M S. “Aluminum Alloy. Advances for Ground Vehicles”, Advanced Materials & Processes, 160 (2), pp. 51–54. Feb. (2002). Nickodemus, G H; Kramer, L S; Pickens, J R; Burkins, M S. “Aluminum Alloy. Advances for Ground Vehicles”, Advanced Materials & Processes, 160 (2), pp. 51–54. Feb. (2002).
7.
Zurück zum Zitat J.R. Pickens, F.H. Heubaum, L.S. Kramer, and K.S. Kumar, Ultra High Strength Weldable Aluminum-Lithium Alloys, U.S. Patent 5,032,359, July 1991 J.R. Pickens, F.H. Heubaum, L.S. Kramer, and K.S. Kumar, Ultra High Strength Weldable Aluminum-Lithium Alloys, U.S. Patent 5,032,359, July 1991
8.
Zurück zum Zitat J.R. Pickens, F.H. Heubaum, and L.S. Kramer, Aluminum-Lithium Welding Alloys, U.S. Patent 5,122,339, June 1992 J.R. Pickens, F.H. Heubaum, and L.S. Kramer, Aluminum-Lithium Welding Alloys, U.S. Patent 5,122,339, June 1992
9.
Zurück zum Zitat J.R. Pickens, T.J. Langan, F.H. Heubaum, L.S. Kramer, and A. Cho, Ultra High Strength Aluminum-Base Alloys, U.S. Patent 5,211,910, May 1993 J.R. Pickens, T.J. Langan, F.H. Heubaum, L.S. Kramer, and A. Cho, Ultra High Strength Aluminum-Base Alloys, U.S. Patent 5,211,910, May 1993
10.
Zurück zum Zitat J.R. Pickens, F.H. Heubaum, L.S. Kramer, and T.J. Langan, Ultra High Strength Al-Cu-Li-Mg Alloys, U.S. Patent 5,259,897, Nov 1993 J.R. Pickens, F.H. Heubaum, L.S. Kramer, and T.J. Langan, Ultra High Strength Al-Cu-Li-Mg Alloys, U.S. Patent 5,259,897, Nov 1993
11.
Zurück zum Zitat T.J. Langan, J.R. Pickens, F.H. Heubaum, and L.S. Kramer, High Strength Al-Cu-Li-Zn-Mg Alloys, U.S. Patent 5,462,712, Oct 1995 T.J. Langan, J.R. Pickens, F.H. Heubaum, and L.S. Kramer, High Strength Al-Cu-Li-Zn-Mg Alloys, U.S. Patent 5,462,712, Oct 1995
12.
Zurück zum Zitat Alcan Rolled Products (formerly Pechiney Rolled Products LLC), Ravenswood, West Virginia 26164 Alcan Rolled Products (formerly Pechiney Rolled Products LLC), Ravenswood, West Virginia 26164
13.
Zurück zum Zitat MIL-STD-1946, Welding of Aluminum Alloy Armor (Revision A), Appendix A – Ballistic Shock Test, 2004 MIL-STD-1946, Welding of Aluminum Alloy Armor (Revision A), Appendix A – Ballistic Shock Test, 2004
14.
Zurück zum Zitat A5.10 Specification for Bare Aluminum and Aluminum-Alloy Welding Electrodes and Rods, American Welding Society, Miami, FL, 1999 A5.10 Specification for Bare Aluminum and Aluminum-Alloy Welding Electrodes and Rods, American Welding Society, Miami, FL, 1999
17.
Zurück zum Zitat R.A. Gentry and R.P. Martukanitz, Aluminum Base Copper-Lithium-Magnesium Welding Alloy for Welding Aluminum Lithium Alloys, U.S. Patent 4,848,647, July 1989 R.A. Gentry and R.P. Martukanitz, Aluminum Base Copper-Lithium-Magnesium Welding Alloy for Welding Aluminum Lithium Alloys, U.S. Patent 4,848,647, July 1989
18.
Zurück zum Zitat L.S. Kramer, J.R. Pickens, and C.E. Cross, Al-Cu-Li Weld Filler Alloy, Process for the Preparation Thereof and Process for Welding Therewith, U.S. Patent 5,512,241, Apr 1996 L.S. Kramer, J.R. Pickens, and C.E. Cross, Al-Cu-Li Weld Filler Alloy, Process for the Preparation Thereof and Process for Welding Therewith, U.S. Patent 5,512,241, Apr 1996
19.
Zurück zum Zitat Philip, C., “Welding the Space Shuttle’s Al-Li external tank presents a challenge”, Welding Journal, 77(6), pp. 45–47, June (1998). Philip, C., “Welding the Space Shuttle’s Al-Li external tank presents a challenge”, Welding Journal, 77(6), pp. 45–47, June (1998).
20.
Zurück zum Zitat Pickens, J. R., “The Weldability of Lithium-Containing Aluminum Alloys”, Journal of Materials Science, vol. 20, pp. 4247–4258, (1985).CrossRef Pickens, J. R., “The Weldability of Lithium-Containing Aluminum Alloys”, Journal of Materials Science, vol. 20, pp. 4247–4258, (1985).CrossRef
21.
Zurück zum Zitat Sampath, K. “Tech Spotlight: Welding aluminum armor,” Advanced Materials & Processes, 163 (10), pp. 27–29, October (2005). Sampath, K. “Tech Spotlight: Welding aluminum armor,” Advanced Materials & Processes, 163 (10), pp. 27–29, October (2005).
22.
Zurück zum Zitat Dudas, J. H., and Collins, F. R. “Preventing weld cracks in high-strength aluminum alloys,” Welding Journal, 45(6), pp. 241s–249s, June (1966). Dudas, J. H., and Collins, F. R. “Preventing weld cracks in high-strength aluminum alloys,” Welding Journal, 45(6), pp. 241s–249s, June (1966).
23.
Zurück zum Zitat S. Kou, Welding Metallurgy, Wiley, 1987, p 249 S. Kou, Welding Metallurgy, Wiley, 1987, p 249
24.
Zurück zum Zitat S.R. Shah, J.E. Wittig, and G.T. Hahn, Microstructural Analysis of a High Strength Al-Cu-Li (Weldalite™ 049) Alloy Weld, International Trends in Welding Science and Technology, S.A. David and J.M. Vitek, Eds., ASM International, 1993, p 281–285 S.R. Shah, J.E. Wittig, and G.T. Hahn, Microstructural Analysis of a High Strength Al-Cu-Li (Weldalite™ 049) Alloy Weld, International Trends in Welding Science and Technology, S.A. David and J.M. Vitek, Eds., ASM International, 1993, p 281–285
25.
Zurück zum Zitat Guttierrez, A., and Lippold, J. C., “A proposed mechanism for equiaxed grain formation along the fusion boundary in aluminum-copper-lithium alloys”, Welding Journal Research Supplement, 77 (3), pp.123–132s, March (1998). Guttierrez, A., and Lippold, J. C., “A proposed mechanism for equiaxed grain formation along the fusion boundary in aluminum-copper-lithium alloys”, Welding Journal Research Supplement, 77 (3), pp.123–132s, March (1998).
Metadaten
Titel
Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal
verfasst von
K. Sampath
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2009
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-009-9371-4

Weitere Artikel der Ausgabe 9/2009

Journal of Materials Engineering and Performance 9/2009 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.