Skip to main content
Erschienen in: Archive of Applied Mechanics 1/2021

21.09.2020 | Original

Transversely isotropic magnetoactive elastomers: theory and experiments

verfasst von: Alireza Beheshti, Ramin Sedaghati, Subhash Rakheja

Erschienen in: Archive of Applied Mechanics | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current contribution is concerned with the development of novel constitutive equations for anisotropic magnetoactive elastomers (MAEs). A hyperelastic material model for an incompressible magnetoelastic medium representing transversely isotropic MAEs has been developed to investigate their response behavior in the presence of the applied magnetic field while undergoing finite deformation. Transversely isotropic MAE samples in circular cylindrical geometry with 15% iron particle volume fraction are then fabricated and experimentally tested to measure their permeability and torque–twist response. The experimental results have then been effectively utilized to identify the constant material parameters in the proposed material model. Finally, the accuracy and validity of the proposed constitutive equations are demonstrated through the comparison of the simulation and experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boczkowska, A., Awietj, S.: Microstructure and properties of magnetorheological elastomers. In: Boczkowska, A. (ed.) Advanced Elastomers—Technology, Properties and Applications. InTech, New York (2012) Boczkowska, A., Awietj, S.: Microstructure and properties of magnetorheological elastomers. In: Boczkowska, A. (ed.) Advanced Elastomers—Technology, Properties and Applications. InTech, New York (2012)
2.
Zurück zum Zitat Farshad, M., Benine, A.: Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004) Farshad, M., Benine, A.: Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004)
3.
Zurück zum Zitat Coquelle, E., Bossis, G.: Mullins effect in elastomers filled with particles aligned by a magnetic field. Int. J. Solids Struct. 43(25–26), 7659–7672 (2006)MATH Coquelle, E., Bossis, G.: Mullins effect in elastomers filled with particles aligned by a magnetic field. Int. J. Solids Struct. 43(25–26), 7659–7672 (2006)MATH
4.
Zurück zum Zitat Menzel, A.M.: Mesoscopic characterization of magnetoelastic hybrid materials: magnetic gels and elastomers, their particle-scale description, and scale-bridging links. Arch. Appl. Mech. 89(1), 17–45 (2018) Menzel, A.M.: Mesoscopic characterization of magnetoelastic hybrid materials: magnetic gels and elastomers, their particle-scale description, and scale-bridging links. Arch. Appl. Mech. 89(1), 17–45 (2018)
5.
Zurück zum Zitat Bellan, C., Bossis, G.: Field dependence of viscoelastic properties of Mr Elastomers. Int. J. Mod. Phys. B 16(17–18), 2447–2453 (2012) Bellan, C., Bossis, G.: Field dependence of viscoelastic properties of Mr Elastomers. Int. J. Mod. Phys. B 16(17–18), 2447–2453 (2012)
6.
Zurück zum Zitat Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics 10(4–5), 555–569 (2000) Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics 10(4–5), 555–569 (2000)
7.
Zurück zum Zitat Kallio, M.: The Elastic and Damping Properties of Magnetorheological Elastomers. VTT Publications, New York (2005) Kallio, M.: The Elastic and Damping Properties of Magnetorheological Elastomers. VTT Publications, New York (2005)
8.
Zurück zum Zitat Vicente, J.D., Bossis, G., Lacis, S., Guyot, M.: Permability measurements in cobalt ferrite and carbonyl iron powders and suspensions. J. Magn. Magn. Mater. 251(1), 9 (2002) Vicente, J.D., Bossis, G., Lacis, S., Guyot, M.: Permability measurements in cobalt ferrite and carbonyl iron powders and suspensions. J. Magn. Magn. Mater. 251(1), 9 (2002)
9.
Zurück zum Zitat Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22(6), 677–680 (2003) Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22(6), 677–680 (2003)
10.
Zurück zum Zitat Odenbach, S.: Microstructure and rheology of magnetic hybrid materials. Arch. Appl. Mech. 86(1–2), 269–279 (2016) Odenbach, S.: Microstructure and rheology of magnetic hybrid materials. Arch. Appl. Mech. 86(1–2), 269–279 (2016)
11.
Zurück zum Zitat Borin, D., Stepanov, G., Dohmen, E.: Hybrid magnetoactive elastomer with a soft matrix and mixed powder. Arch. Appl. Mech. 89(1), 105–117 (2018) Borin, D., Stepanov, G., Dohmen, E.: Hybrid magnetoactive elastomer with a soft matrix and mixed powder. Arch. Appl. Mech. 89(1), 105–117 (2018)
12.
Zurück zum Zitat Jolly, M.R., Carlson, J.D., Muñoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7(6), 613–622 (1996) Jolly, M.R., Carlson, J.D., Muñoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7(6), 613–622 (1996)
13.
Zurück zum Zitat Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22(3), 245–251 (2003) Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22(3), 245–251 (2003)
14.
Zurück zum Zitat Varga, Z., Filipcsei, G., Zrínyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47(1), 227–233 (2006) Varga, Z., Filipcsei, G., Zrínyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47(1), 227–233 (2006)
15.
Zurück zum Zitat Dorfmann, A., Ogden, R.W.: Nonlinear magnetoelastic deformations. Q. J. Mech. Appl. Math. 57(4), 599–622 (2004)MathSciNetMATH Dorfmann, A., Ogden, R.W.: Nonlinear magnetoelastic deformations. Q. J. Mech. Appl. Math. 57(4), 599–622 (2004)MathSciNetMATH
16.
Zurück zum Zitat Bustamante, R.: Transversely isotropic nonlinear magneto-active elastomers. Acta Mech. 210(3–4), 183–214 (2009)MATH Bustamante, R.: Transversely isotropic nonlinear magneto-active elastomers. Acta Mech. 210(3–4), 183–214 (2009)MATH
17.
Zurück zum Zitat Danas, K., Kankanala, S.V., Triantafyllidis, N.: Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 60(1), 120–138 (2012) Danas, K., Kankanala, S.V., Triantafyllidis, N.: Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 60(1), 120–138 (2012)
18.
Zurück zum Zitat Kankanala, S.V., Triantafyllidis, N.: On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 52(12), 2869–2908 (2004)MathSciNetMATH Kankanala, S.V., Triantafyllidis, N.: On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 52(12), 2869–2908 (2004)MathSciNetMATH
19.
Zurück zum Zitat Saxena, P., Hossain, M., Steinmann, P.: Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers. Proc. Math. Phys. Eng. Sci. 470(2166), 20140082 (2014) Saxena, P., Hossain, M., Steinmann, P.: Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers. Proc. Math. Phys. Eng. Sci. 470(2166), 20140082 (2014)
20.
Zurück zum Zitat Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1–2), 107–128 (1996)MATH Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1–2), 107–128 (1996)MATH
21.
Zurück zum Zitat Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elast. 49(1), 1–30 (1997)MathSciNetMATH Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elast. 49(1), 1–30 (1997)MathSciNetMATH
22.
Zurück zum Zitat Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54(5–6), 525–552 (2002)MathSciNetMATH Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54(5–6), 525–552 (2002)MathSciNetMATH
23.
Zurück zum Zitat Merodio, J., Ogden, R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 40(18), 4707–4727 (2003)MathSciNetMATH Merodio, J., Ogden, R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 40(18), 4707–4727 (2003)MathSciNetMATH
24.
Zurück zum Zitat Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Nonlinear Mech. 40(2–3), 213–227 (2005)MATH Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Nonlinear Mech. 40(2–3), 213–227 (2005)MATH
25.
Zurück zum Zitat Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53(9), 1985–2015 (2005)MathSciNetMATH Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53(9), 1985–2015 (2005)MathSciNetMATH
26.
Zurück zum Zitat Kassianidis, F., Ogden, R.W., Merodio, J., Pence, T.J.: Azimuthal shear of a transversely isotropic elastic solid. Math. Mech. Solids 13(8), 690–724 (2008)MathSciNetMATH Kassianidis, F., Ogden, R.W., Merodio, J., Pence, T.J.: Azimuthal shear of a transversely isotropic elastic solid. Math. Mech. Solids 13(8), 690–724 (2008)MathSciNetMATH
27.
Zurück zum Zitat Horgan, C.O., Murphy, J.G.: Torsion of incompressible fiber-reinforced nonlinearly elastic circular cylinders. J. Elast. 103(2), 235–246 (2010)MathSciNetMATH Horgan, C.O., Murphy, J.G.: Torsion of incompressible fiber-reinforced nonlinearly elastic circular cylinders. J. Elast. 103(2), 235–246 (2010)MathSciNetMATH
28.
Zurück zum Zitat Horgan, C.O., Murphy, J.G.: Finite extension and torsion of fiber-reinforced non-linearly elastic circular cylinders. Int. J. Nonlinear Mech. 47(2), 97–104 (2012) Horgan, C.O., Murphy, J.G.: Finite extension and torsion of fiber-reinforced non-linearly elastic circular cylinders. Int. J. Nonlinear Mech. 47(2), 97–104 (2012)
29.
Zurück zum Zitat Destrade, M., Donald, B.M., Murphy, J.G., Saccomandi, G.: At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. Comput. Mech. 52(4), 959–969 (2013)MathSciNetMATH Destrade, M., Donald, B.M., Murphy, J.G., Saccomandi, G.: At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. Comput. Mech. 52(4), 959–969 (2013)MathSciNetMATH
30.
Zurück zum Zitat Destrade, M., Horgan, C.O., Murphy, J.G.: Dominant negative Poynting effect in simple shearing of soft tissues. J. Eng. Math. 95(1), 87–98 (2014)MathSciNetMATH Destrade, M., Horgan, C.O., Murphy, J.G.: Dominant negative Poynting effect in simple shearing of soft tissues. J. Eng. Math. 95(1), 87–98 (2014)MathSciNetMATH
31.
Zurück zum Zitat Hamdaoui, M.E., Merodio, J., Ogden, R.W., Rodríguez, J.: Finite elastic deformations of transversely isotropic circular cylindrical tubes. Int. J. Solids Struct. 51(5), 1188–1196 (2014) Hamdaoui, M.E., Merodio, J., Ogden, R.W., Rodríguez, J.: Finite elastic deformations of transversely isotropic circular cylindrical tubes. Int. J. Solids Struct. 51(5), 1188–1196 (2014)
32.
Zurück zum Zitat Polignone, D.A., Horgan, C.O.: Cavitation for incompressible anisotropic nonlinearly elastic spheres. J. Elast. 33(1), 27–65 (1993)MATH Polignone, D.A., Horgan, C.O.: Cavitation for incompressible anisotropic nonlinearly elastic spheres. J. Elast. 33(1), 27–65 (1993)MATH
33.
Zurück zum Zitat Lu, J., Zhang, L.: Physically motivated invariant formulation for transversely isotropic hyperelasticity. Int. J. Solids Struct. 42(23), 6015–6031 (2005)MATH Lu, J., Zhang, L.: Physically motivated invariant formulation for transversely isotropic hyperelasticity. Int. J. Solids Struct. 42(23), 6015–6031 (2005)MATH
34.
Zurück zum Zitat Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–32 (2013) Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–32 (2013)
35.
Zurück zum Zitat Murphy, J.G.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A Solids 42, 90–96 (2013)MathSciNetMATH Murphy, J.G.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A Solids 42, 90–96 (2013)MathSciNetMATH
36.
Zurück zum Zitat Horgan, C.O., Murphy, J.G.: Reverse poynting effects in the torsion of soft biomaterials. J. Elast. 118(2), 127–140 (2014)MathSciNetMATH Horgan, C.O., Murphy, J.G.: Reverse poynting effects in the torsion of soft biomaterials. J. Elast. 118(2), 127–140 (2014)MathSciNetMATH
37.
Zurück zum Zitat Moreira, C.S., Nunes, L.C.S.: Effects of fiber orientation in a soft unidirectional fiber-reinforced material under simple shear deformation. Int. J. Nonlinear Mech. 111, 72–81 (2019) Moreira, C.S., Nunes, L.C.S.: Effects of fiber orientation in a soft unidirectional fiber-reinforced material under simple shear deformation. Int. J. Nonlinear Mech. 111, 72–81 (2019)
38.
Zurück zum Zitat Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162(1–4), 151–164 (1998)MATH Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162(1–4), 151–164 (1998)MATH
39.
Zurück zum Zitat Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41(14), 3833–3848 (2004)MathSciNetMATH Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41(14), 3833–3848 (2004)MathSciNetMATH
40.
Zurück zum Zitat Itskov, M., Ehret, A.E., Mavrilas, D.: A polyconvex anisotropic strain-energy function for soft collagenous tissues. Biomech. Model. Mechanobiol. 5(1), 17–26 (2006) Itskov, M., Ehret, A.E., Mavrilas, D.: A polyconvex anisotropic strain-energy function for soft collagenous tissues. Biomech. Model. Mechanobiol. 5(1), 17–26 (2006)
41.
Zurück zum Zitat Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006) Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)
42.
Zurück zum Zitat Guo, Z.Y., Peng, X.Q., Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54(9), 1952–1971 (2006)MATH Guo, Z.Y., Peng, X.Q., Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54(9), 1952–1971 (2006)MATH
43.
Zurück zum Zitat Pao, Y.-H.: Electromagnetic forces in deformable continua. In: Nevat-Nasser, S. (ed.) Mechanics Today, pp. 209–305. Pergamon Press Inc., New York (1978) Pao, Y.-H.: Electromagnetic forces in deformable continua. In: Nevat-Nasser, S. (ed.) Mechanics Today, pp. 209–305. Pergamon Press Inc., New York (1978)
44.
Zurück zum Zitat Kovetz, A.: Electromagnet Theory. Oxford University Press, New York (2000)MATH Kovetz, A.: Electromagnet Theory. Oxford University Press, New York (2000)MATH
45.
Zurück zum Zitat Batra, R.C: Elements of continuum mechanics. AIAA Education Series (2006) Batra, R.C: Elements of continuum mechanics. AIAA Education Series (2006)
46.
Zurück zum Zitat Beheshti, A., Sedaghati, R., Rakheja, S.: Finite deformation analysis of isotropic magnetoactive elastomers. Contin. Mech. Thermodyn. 2020, 1–16 (2020)MATH Beheshti, A., Sedaghati, R., Rakheja, S.: Finite deformation analysis of isotropic magnetoactive elastomers. Contin. Mech. Thermodyn. 2020, 1–16 (2020)MATH
47.
Zurück zum Zitat Beheshti, A., Sedaghati, R., Rakheja, S.: Development of a small-deformation material model for an isotropic magneto-active elastomer. Acta Mech. 231(6), 2287–2301 (2020)MathSciNetMATH Beheshti, A., Sedaghati, R., Rakheja, S.: Development of a small-deformation material model for an isotropic magneto-active elastomer. Acta Mech. 231(6), 2287–2301 (2020)MathSciNetMATH
48.
Zurück zum Zitat Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, Wien (1984)MATH Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, Wien (1984)MATH
49.
Zurück zum Zitat Krupka, J.: Measurement of the complex permittivity, initial permeability, permeability tensor and ferromagnetic linewidth of gyromagnetic materials. Meas. Sci. Technol. 29(9), 092001 (2018) Krupka, J.: Measurement of the complex permittivity, initial permeability, permeability tensor and ferromagnetic linewidth of gyromagnetic materials. Meas. Sci. Technol. 29(9), 092001 (2018)
50.
Zurück zum Zitat Schubert, G., Harrison, P.: Magnetic induction measurements and identification of the permeability of magneto-rheological elastomers using finite element simulations. J. Magn. Magn. Mater. 404, 205–214 (2016) Schubert, G., Harrison, P.: Magnetic induction measurements and identification of the permeability of magneto-rheological elastomers using finite element simulations. J. Magn. Magn. Mater. 404, 205–214 (2016)
51.
Zurück zum Zitat Lopez-Pamies, O.: A new I-1-based hyperelastic model for rubber elastic materials. C. R. Méc. 338(1), 3–11 (2010)MathSciNetMATH Lopez-Pamies, O.: A new I-1-based hyperelastic model for rubber elastic materials. C. R. Méc. 338(1), 3–11 (2010)MathSciNetMATH
52.
Zurück zum Zitat Johlitz, M., Diebels, S.: Characterisation of a polymer using biaxial tension tests. Part I: hyperelasticity. Arch. Appl. Mech. 81(10), 1333–1349 (2010)MATH Johlitz, M., Diebels, S.: Characterisation of a polymer using biaxial tension tests. Part I: hyperelasticity. Arch. Appl. Mech. 81(10), 1333–1349 (2010)MATH
53.
Zurück zum Zitat van den Bogert, P.A.J., de Borst, R.: On the behaviour of rubberlike materials in compression and shear. Arch. Appl. Mech. 64(2), 136–146 (1994)MATH van den Bogert, P.A.J., de Borst, R.: On the behaviour of rubberlike materials in compression and shear. Arch. Appl. Mech. 64(2), 136–146 (1994)MATH
54.
Zurück zum Zitat Frollo, I., Krafčík, A., Andris, P., Přibil, J., Dermek, T.: Circular samples as objects for magnetic resonance imaging—mathematical simulation, experimental results. Meas. Sci. Rev. 15(6), 313–318 (2015) Frollo, I., Krafčík, A., Andris, P., Přibil, J., Dermek, T.: Circular samples as objects for magnetic resonance imaging—mathematical simulation, experimental results. Meas. Sci. Rev. 15(6), 313–318 (2015)
55.
Zurück zum Zitat Stolbov, O.V., Raikher, Y.L.: Magnetostriction effect in soft magnetic elastomers. Arch. Appl. Mech. 89(1), 63–76 (2018) Stolbov, O.V., Raikher, Y.L.: Magnetostriction effect in soft magnetic elastomers. Arch. Appl. Mech. 89(1), 63–76 (2018)
Metadaten
Titel
Transversely isotropic magnetoactive elastomers: theory and experiments
verfasst von
Alireza Beheshti
Ramin Sedaghati
Subhash Rakheja
Publikationsdatum
21.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 1/2021
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01778-0

Weitere Artikel der Ausgabe 1/2021

Archive of Applied Mechanics 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.