Skip to main content
Erschienen in: Cognitive Computation 1/2019

07.11.2018

Travel Time Functions Prediction for Time-Dependent Networks

verfasst von: Jiajia Li, Xiufeng Xia, Xiangyu Liu, Liang Zhao, Botao Wang

Erschienen in: Cognitive Computation | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The studies on the TDN (time-dependent network), in which the travel time of the same road segment varies depending on the time of the day, have attracted much attention of researchers, but there is little work focusing on the travel time functions prediction problem. Though traditional methods for travel time or travel speed prediction problem can be used to generate the travel time functions, they have some limitations due to the need of less breakpoints, fine granularity, and long-term prediction. In this paper, we study the travel time functions prediction problem for TDN based on taxi trajectory data. In order to maintain a high degree of accuracy in fine-grained and long-predicted situations, we take into account not only the traffic incidents but also the data sparsity. Specifically, a traffic incident detection method is proposed based on k-means algorithm and a downstream-based strategy is proposed to estimate the speeds of segments considering the data sparsity. To make the breakpoints of function not so much, a prediction algorithm based on classification using ELM (extreme learning machine) is proposed, which predicts the speed classes taking both the weather and the adjacent segment conditions into account. In addition, a transformation method is presented to convert the discrete travel speeds into piecewise linear functions satisfying FIFO (First-In-First-Out) property. The experimental results show that ELM outperforms SVM (support vector machine) with regard to both the training time and prediction accuracy. Moreover, it also can be seen that both the weather conditions and the adjacent segment conditions have impact on the prediction accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Orda A, Rom R. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J ACM (JACM) 1990;37(3):607–625.CrossRef Orda A, Rom R. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J ACM (JACM) 1990;37(3):607–625.CrossRef
2.
Zurück zum Zitat Delling D. 2008. Time-dependent sharc-routing. In: European symposium on algorithms, pp 332–343. Springer. Delling D. 2008. Time-dependent sharc-routing. In: European symposium on algorithms, pp 332–343. Springer.
3.
Zurück zum Zitat Demiryurek U, Banaei-Kashani F, Shahabi C. 2010. Towards k-nearest neighbor search in time-dependent spatial network databases. In: International workshop on databases in networked information systems, pp. 296–310. Springer. Demiryurek U, Banaei-Kashani F, Shahabi C. 2010. Towards k-nearest neighbor search in time-dependent spatial network databases. In: International workshop on databases in networked information systems, pp. 296–310. Springer.
4.
Zurück zum Zitat Komai Y, Nguyen D H, Hara T, Nishio S. 2014. knn search utilizing index of the minimum road travel time in time-dependent road networks. In: IEEE 33rd international symposium on reliable distributed systems workshops (SRDSW), pp 131–137. IEEE. Komai Y, Nguyen D H, Hara T, Nishio S. 2014. knn search utilizing index of the minimum road travel time in time-dependent road networks. In: IEEE 33rd international symposium on reliable distributed systems workshops (SRDSW), pp 131–137. IEEE.
5.
Zurück zum Zitat Li J, Liu X, Liu X, Xia X, Zhu R. Improved td-ftt algorithm based on dynamically selecting heuristic values. J Comput Appl 2018;38(1):120–125. Li J, Liu X, Liu X, Xia X, Zhu R. Improved td-ftt algorithm based on dynamically selecting heuristic values. J Comput Appl 2018;38(1):120–125.
6.
Zurück zum Zitat Costa CF, Machado J, Nascimento M A, Macêdo JA. 2015. Aggregate k-nearest neighbors queries in time-dependent road networks. In: Proceedings of the 4th ACM SIGSPATIAL international workshop on mobile geographic information systems, pp 3–12 ACM. Costa CF, Machado J, Nascimento M A, Macêdo JA. 2015. Aggregate k-nearest neighbors queries in time-dependent road networks. In: Proceedings of the 4th ACM SIGSPATIAL international workshop on mobile geographic information systems, pp 3–12 ACM.
7.
Zurück zum Zitat Borutta F, Nascimento MA, Niedermayer J, Kröger P. 2015. Reverse k-nearest neighbour schedules in time-dependent road networks. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems, p 27. ACM. Borutta F, Nascimento MA, Niedermayer J, Kröger P. 2015. Reverse k-nearest neighbour schedules in time-dependent road networks. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems, p 27. ACM.
8.
Zurück zum Zitat Li L, Hua W, Du X, Zhou X. Minimal on-road time route scheduling on time-dependent graphs. Proc VLDB Endowment 2017;10(11):1274–1285.CrossRef Li L, Hua W, Du X, Zhou X. Minimal on-road time route scheduling on time-dependent graphs. Proc VLDB Endowment 2017;10(11):1274–1285.CrossRef
9.
Zurück zum Zitat Li L, Zheng K, Wang S, Hua W, Zhou X. Go slow to go fast: minimal on-road time route scheduling with parking facilities using historical trajectory. The International Journal on Very Large Data Bases 2018;27(3):321–345.CrossRef Li L, Zheng K, Wang S, Hua W, Zhou X. Go slow to go fast: minimal on-road time route scheduling with parking facilities using historical trajectory. The International Journal on Very Large Data Bases 2018;27(3):321–345.CrossRef
10.
Zurück zum Zitat Yang Y, Gao H, Yu J X, Li J. Finding the cost-optimal path with time constraint over time-dependent graphs. Proc VLDB Endowment 2014;7(9):673–684.CrossRef Yang Y, Gao H, Yu J X, Li J. Finding the cost-optimal path with time constraint over time-dependent graphs. Proc VLDB Endowment 2014;7(9):673–684.CrossRef
11.
Zurück zum Zitat Foschini L, Hershberger J, Suri S. 2011. On the complexity of time-dependent shortest paths. In: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms pp. 327–341 SIAM. Foschini L, Hershberger J, Suri S. 2011. On the complexity of time-dependent shortest paths. In: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms pp. 327–341 SIAM.
12.
Zurück zum Zitat Ding Y, Li Y, Deng K, Tan H, Yuan M, Ni L M. Detecting and analyzing urban regions with high impact of weather change on transport. IEEE Transactions on Big Data 2017;3(2):126–139.CrossRef Ding Y, Li Y, Deng K, Tan H, Yuan M, Ni L M. Detecting and analyzing urban regions with high impact of weather change on transport. IEEE Transactions on Big Data 2017;3(2):126–139.CrossRef
13.
Zurück zum Zitat Zhao L, Ahmed A, Tang X, Lin N, Cuiwei L, Jiajia L. 2018. A weather-assisted driver experiences based path selection method. In: 2018 IEEE 20th international conference on high performance computing and communications (HPCC). IEEE. Zhao L, Ahmed A, Tang X, Lin N, Cuiwei L, Jiajia L. 2018. A weather-assisted driver experiences based path selection method. In: 2018 IEEE 20th international conference on high performance computing and communications (HPCC). IEEE.
14.
Zurück zum Zitat Cintia P, Trasarti R, De Macedo JA, Almada L, Fereira C. 2013. A gravity model for speed estimation over road network. In: IEEE 14th international conference on mobile data management (MDM), vol 2, pp 136–141. IEEE. Cintia P, Trasarti R, De Macedo JA, Almada L, Fereira C. 2013. A gravity model for speed estimation over road network. In: IEEE 14th international conference on mobile data management (MDM), vol 2, pp 136–141. IEEE.
15.
Zurück zum Zitat Nascimento SM, Chucre MR, de Macedo JAF, Monteiro J, Casanova MA. 2016. On computing temporal functions for a time-dependent networks using trajectory data. In: Proceedings of the 20th international database engineering & applications symposium, pp 236–241. ACM. Nascimento SM, Chucre MR, de Macedo JAF, Monteiro J, Casanova MA. 2016. On computing temporal functions for a time-dependent networks using trajectory data. In: Proceedings of the 20th international database engineering & applications symposium, pp 236–241. ACM.
16.
Zurück zum Zitat Vlahogianni EI, Golias JC, Karlaftis MG. Short-term traffic forecasting: Overview of objectives and methods. Transp Rev 2004;24(5):533–557.CrossRef Vlahogianni EI, Golias JC, Karlaftis MG. Short-term traffic forecasting: Overview of objectives and methods. Transp Rev 2004;24(5):533–557.CrossRef
17.
Zurück zum Zitat Vlahogianni EI, Karlaftis MG, Golias JC. Short-term traffic forecasting: Where we are and where we are going. Transportation Research Part C: Emerging Technologies 2014;43:3–19.CrossRef Vlahogianni EI, Karlaftis MG, Golias JC. Short-term traffic forecasting: Where we are and where we are going. Transportation Research Part C: Emerging Technologies 2014;43:3–19.CrossRef
18.
Zurück zum Zitat Chandra S, Al-Deek H. Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds. Transportation Research Record: Journal of the Transportation Research Board 2008;2061:64–76.CrossRef Chandra S, Al-Deek H. Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds. Transportation Research Record: Journal of the Transportation Research Board 2008;2061:64–76.CrossRef
19.
Zurück zum Zitat Zhang Y, Haghani A, Zeng X. Component garch models to account for seasonal patterns and uncertainties in travel-time prediction. IEEE Trans Intell Transp Syst 2015;16(2):719–729. Zhang Y, Haghani A, Zeng X. Component garch models to account for seasonal patterns and uncertainties in travel-time prediction. IEEE Trans Intell Transp Syst 2015;16(2):719–729.
20.
Zurück zum Zitat Shang P, Li X, Kamae S. Chaotic analysis of traffic time series. Chaos, Solitons & Fractals 2005;25(1):121–128.CrossRef Shang P, Li X, Kamae S. Chaotic analysis of traffic time series. Chaos, Solitons & Fractals 2005;25(1):121–128.CrossRef
21.
Zurück zum Zitat Okutani I, Stephanedes YJ. Dynamic prediction of traffic volume through kalman filtering theory. Transp Res B Methodol 1984;18(1):1–11.CrossRef Okutani I, Stephanedes YJ. Dynamic prediction of traffic volume through kalman filtering theory. Transp Res B Methodol 1984;18(1):1–11.CrossRef
22.
Zurück zum Zitat Wang Y, Papageorgiou M, Messmer A. Renaissance–a unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transportation Research Part C: Emerging Technologies 2006;14(3):190–212.CrossRef Wang Y, Papageorgiou M, Messmer A. Renaissance–a unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transportation Research Part C: Emerging Technologies 2006;14(3):190–212.CrossRef
23.
Zurück zum Zitat Chien SI-J, Kuchipudi CM. Dynamic travel time prediction with real-time and historic data. J Transp Eng 2003;129(6):608–616.CrossRef Chien SI-J, Kuchipudi CM. Dynamic travel time prediction with real-time and historic data. J Transp Eng 2003;129(6):608–616.CrossRef
24.
Zurück zum Zitat Yang F, Yin Z, Liu H, Ran B. Online recursive algorithm for short-term traffic prediction. Transportation Research Record: Journal of the Transportation Research Board 2004;1879:1–8.CrossRef Yang F, Yin Z, Liu H, Ran B. Online recursive algorithm for short-term traffic prediction. Transportation Research Record: Journal of the Transportation Research Board 2004;1879:1–8.CrossRef
25.
Zurück zum Zitat Ma X, Yu H, Wang Y, Wang Y. Large-scale transportation network congestion evolution prediction using deep learning theory. PloS One 2015;10(3):e0119044.PubMedPubMedCentralCrossRef Ma X, Yu H, Wang Y, Wang Y. Large-scale transportation network congestion evolution prediction using deep learning theory. PloS One 2015;10(3):e0119044.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Tang J, Liu F, Zou Y, Zhang W, Wang Y. 2017. An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Transactions on Intelligent Transportation Systems. Tang J, Liu F, Zou Y, Zhang W, Wang Y. 2017. An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Transactions on Intelligent Transportation Systems.
27.
Zurück zum Zitat Wu C-H, Ho J-M, Lee D-T. Travel-time prediction with support vector regression. IEEE Trans Intell Transp Syst 2004;5(4):276–281.CrossRef Wu C-H, Ho J-M, Lee D-T. Travel-time prediction with support vector regression. IEEE Trans Intell Transp Syst 2004;5(4):276–281.CrossRef
28.
Zurück zum Zitat Asif MT, Dauwels J, Goh CY, Oran A, Fathi E, Xu M, Dhanya MM, Mitrovic N, Jaillet P. Spatiotemporal patterns in large-scale traffic speed prediction. IEEE Trans Intell Transp Syst 2014;15(2):794–804.CrossRef Asif MT, Dauwels J, Goh CY, Oran A, Fathi E, Xu M, Dhanya MM, Mitrovic N, Jaillet P. Spatiotemporal patterns in large-scale traffic speed prediction. IEEE Trans Intell Transp Syst 2014;15(2):794–804.CrossRef
29.
Zurück zum Zitat Zhang Y, Liu Y. Traffic forecasting using least squares support vector machines. Transportmetrica 2009;5(3):193–213.CrossRef Zhang Y, Liu Y. Traffic forecasting using least squares support vector machines. Transportmetrica 2009;5(3):193–213.CrossRef
30.
Zurück zum Zitat Dimitriou L, Tsekeris T, Stathopoulos A. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transportation Research Part C: Emerging Technologies 2008;16(5):554–573.CrossRef Dimitriou L, Tsekeris T, Stathopoulos A. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transportation Research Part C: Emerging Technologies 2008;16(5):554–573.CrossRef
31.
Zurück zum Zitat Zheng W, Lee D.-H., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J Transp Eng 2006;132(2):114–121.CrossRef Zheng W, Lee D.-H., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J Transp Eng 2006;132(2):114–121.CrossRef
32.
Zurück zum Zitat Dong C, Richards SH, Yang Q, Shao C. Combining the statistical model and heuristic model to predict flow rate. J Transp Eng 2014;140(7):04014023.CrossRef Dong C, Richards SH, Yang Q, Shao C. Combining the statistical model and heuristic model to predict flow rate. J Transp Eng 2014;140(7):04014023.CrossRef
33.
Zurück zum Zitat Sigakova K, Mbiydzenyuy G, Holmgren J. 2015. Impacts of traffic conditions on the performance of road freight transport. In: IEEE 18th international conference on intelligent transportation systems (ITSC), pp 2947–2952. IEEE. Sigakova K, Mbiydzenyuy G, Holmgren J. 2015. Impacts of traffic conditions on the performance of road freight transport. In: IEEE 18th international conference on intelligent transportation systems (ITSC), pp 2947–2952. IEEE.
34.
Zurück zum Zitat Abdel-Aty MA, Pemmanaboina R. Calibrating a real-time traffic crash-prediction model using archived weather and its traffic data. IEEE Trans Intell Transp Syst 2006;7(2):167–174.CrossRef Abdel-Aty MA, Pemmanaboina R. Calibrating a real-time traffic crash-prediction model using archived weather and its traffic data. IEEE Trans Intell Transp Syst 2006;7(2):167–174.CrossRef
35.
Zurück zum Zitat Qiao W, Haghani A, Hamedi M. Short-term travel time prediction considering the effects of weather. Transportation Research Record: Journal of the Transportation Research Board 2012;2308:61–72.CrossRef Qiao W, Haghani A, Hamedi M. Short-term travel time prediction considering the effects of weather. Transportation Research Record: Journal of the Transportation Research Board 2012;2308:61–72.CrossRef
36.
Zurück zum Zitat Huang G-B, Zhu Q-Y, Siew C-K. 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings. vol 2, pp 985–990 IEEE. Huang G-B, Zhu Q-Y, Siew C-K. 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings. vol 2, pp 985–990 IEEE.
37.
Zurück zum Zitat Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1):489–501.CrossRef Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1):489–501.CrossRef
38.
Zurück zum Zitat Qu B.-Y., Lang B, Liang JJ, Qin AK, Crisalle OD. Two-hidden-layer extreme learning machine for regression and classification. Neurocomputing 2016;175:826–834.CrossRef Qu B.-Y., Lang B, Liang JJ, Qin AK, Crisalle OD. Two-hidden-layer extreme learning machine for regression and classification. Neurocomputing 2016;175:826–834.CrossRef
39.
Zurück zum Zitat Huang G-B, Chen L. Letters: Convex incremental extreme learning machine. Neurocomputing 2007;70(16-18):3056–3062.CrossRef Huang G-B, Chen L. Letters: Convex incremental extreme learning machine. Neurocomputing 2007;70(16-18):3056–3062.CrossRef
40.
Zurück zum Zitat Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008;71(16-18):3460–3468.CrossRef Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008;71(16-18):3460–3468.CrossRef
41.
Zurück zum Zitat Liu N, Sakamoto JT, Cao J, Koh ZX, Ho AFW, Lin Z, Ong MEH. Ensemble-based risk scoring with extreme learning machine for prediction of adverse cardiac events. Cogn Comput 2017;9(4):545–554.CrossRef Liu N, Sakamoto JT, Cao J, Koh ZX, Ho AFW, Lin Z, Ong MEH. Ensemble-based risk scoring with extreme learning machine for prediction of adverse cardiac events. Cogn Comput 2017;9(4):545–554.CrossRef
43.
Zurück zum Zitat Atli BG, Miche Y, Kalliola A, Oliver I, Holtmanns S, Lendasse A. Anomaly-based intrusion detection using extreme learning machine and aggregation of network traffic statistics in probability space. Cognitive Computation 2018;10(5):848–863.CrossRef Atli BG, Miche Y, Kalliola A, Oliver I, Holtmanns S, Lendasse A. Anomaly-based intrusion detection using extreme learning machine and aggregation of network traffic statistics in probability space. Cognitive Computation 2018;10(5):848–863.CrossRef
44.
Zurück zum Zitat Liu Y, Vong CM, Wong PK. Extreme learning machine for huge hypotheses re-ranking in statistical machine translation. Cogn Comput 2017;9(2):285–294.CrossRef Liu Y, Vong CM, Wong PK. Extreme learning machine for huge hypotheses re-ranking in statistical machine translation. Cogn Comput 2017;9(2):285–294.CrossRef
45.
Zurück zum Zitat Guo T, Zhang L, Tan X. Neuron pruning-based discriminative extreme learning machine for pattern classification. Cogn Comput 2017;9(4):581–595.CrossRef Guo T, Zhang L, Tan X. Neuron pruning-based discriminative extreme learning machine for pattern classification. Cogn Comput 2017;9(4):581–595.CrossRef
46.
Zurück zum Zitat Li J, Wang B, Wang G, Zhang Y. Probabilistic threshold query optimization based on threshold classification using elm for uncertain data. Neurocomputing 2016;174:211–219.CrossRef Li J, Wang B, Wang G, Zhang Y. Probabilistic threshold query optimization based on threshold classification using elm for uncertain data. Neurocomputing 2016;174:211–219.CrossRef
47.
Zurück zum Zitat Li J, Xia X, Liu X, Wang B, Zhou D, An Y. Probabilistic group nearest neighbor query optimization based on classification using elm. Neurocomputing 2018;277:21–28.CrossRef Li J, Xia X, Liu X, Wang B, Zhou D, An Y. Probabilistic group nearest neighbor query optimization based on classification using elm. Neurocomputing 2018;277:21–28.CrossRef
48.
Zurück zum Zitat Ban X, Guo C, Li G. 2016. Application of extreme learning machine on large scale traffic congestion prediction. In: Proceedings of ELM-2015 vol 1 pp 293–305. Springer. Ban X, Guo C, Li G. 2016. Application of extreme learning machine on large scale traffic congestion prediction. In: Proceedings of ELM-2015 vol 1 pp 293–305. Springer.
49.
Zurück zum Zitat Yuan J, Zheng Y, Zhang C, Xie X, Sun G-Z. 2010. An interactive-voting based map matching algorithm. In: 11th international conference on mobile data management (MDM), pp 43–52. IEEE. Yuan J, Zheng Y, Zhang C, Xie X, Sun G-Z. 2010. An interactive-voting based map matching algorithm. In: 11th international conference on mobile data management (MDM), pp 43–52. IEEE.
Metadaten
Titel
Travel Time Functions Prediction for Time-Dependent Networks
verfasst von
Jiajia Li
Xiufeng Xia
Xiangyu Liu
Liang Zhao
Botao Wang
Publikationsdatum
07.11.2018
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2019
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9603-8

Weitere Artikel der Ausgabe 1/2019

Cognitive Computation 1/2019 Zur Ausgabe

Premium Partner