Skip to main content
Erschienen in: Tribology Letters 1/2016

01.01.2016 | Original Paper

Tuning the Nanofriction Between Two Graphene Layers by External Electric Fields: A Density Functional Theory Study

verfasst von: Jianjun Wang, Jinming Li, Chong Li, Xiaolin Cai, Wenguang Zhu, Yu Jia

Erschienen in: Tribology Letters | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding and controlling nanofriction are important in practical applications of nanotechnology. Our first-principles calculations reveal that interlayer nanofriction between two graphene layers can be tuned by applying an external electric field; the tuned magnitude of the coefficient of friction ranges from −30 to 30 %, which is attributed to the increased disparity of electronic structures between AA and AB stackings. This effect is significantly observed in boron- or nitrogen-doped systems compared with a pristine graphene system. Our findings present a feasible and precise strategy to tune the frictional properties of graphene systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Urbakh, M., Meyer, E.: The renaissance of friction. Nat. Mater. 9, 8–10 (2010)CrossRef Urbakh, M., Meyer, E.: The renaissance of friction. Nat. Mater. 9, 8–10 (2010)CrossRef
3.
Zurück zum Zitat Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)CrossRef Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)CrossRef
4.
Zurück zum Zitat Kwon, S., Ko, J.-H., Jeon, K.-J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12, 6043–6048 (2012)CrossRef Kwon, S., Ko, J.-H., Jeon, K.-J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12, 6043–6048 (2012)CrossRef
5.
Zurück zum Zitat Wang, J., Wang, F., Li, J., Wang, S., Song, Y., Sun, Q., Jia, Y.: Theoretical study of superlow friction between two single-side-hydrogenated graphene sheets. Tribol. Lett. 48, 255–261 (2012)CrossRef Wang, J., Wang, F., Li, J., Wang, S., Song, Y., Sun, Q., Jia, Y.: Theoretical study of superlow friction between two single-side-hydrogenated graphene sheets. Tribol. Lett. 48, 255–261 (2012)CrossRef
6.
Zurück zum Zitat Wang, J., Li, J., Fang, L., Sun, Q., Jia, Y.: Charge distribution view: large difference in friction performance between graphene and hydrogenated graphene systems. Tribol. Lett. 55, 405–412 (2014)CrossRef Wang, J., Li, J., Fang, L., Sun, Q., Jia, Y.: Charge distribution view: large difference in friction performance between graphene and hydrogenated graphene systems. Tribol. Lett. 55, 405–412 (2014)CrossRef
7.
Zurück zum Zitat Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B 76, 155429 (2007)CrossRef Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B 76, 155429 (2007)CrossRef
8.
Zurück zum Zitat Neitola, R., Ruuska, H., Pakkanen, T.A.: Ab iniyio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J. Phys. Chem. B 109, 10348–10354 (2005)CrossRef Neitola, R., Ruuska, H., Pakkanen, T.A.: Ab iniyio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J. Phys. Chem. B 109, 10348–10354 (2005)CrossRef
9.
Zurück zum Zitat Lee, C., Li, Q., Kalb, W., Liu, X., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76 (2010)CrossRef Lee, C., Li, Q., Kalb, W., Liu, X., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76 (2010)CrossRef
10.
Zurück zum Zitat Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)CrossRef Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)CrossRef
11.
Zurück zum Zitat Castro, E.V., Novoselov, K.S., Norozvo, S.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Nilsson, J., Guinea, F., Geim, A.K., Castro, N.A.H.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)CrossRef Castro, E.V., Novoselov, K.S., Norozvo, S.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Nilsson, J., Guinea, F., Geim, A.K., Castro, N.A.H.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)CrossRef
12.
Zurück zum Zitat Mark, K.F., Lui, C.H., Shan, J., Heintz, T.F.: Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009)CrossRef Mark, K.F., Lui, C.H., Shan, J., Heintz, T.F.: Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009)CrossRef
13.
Zurück zum Zitat Guo, Y., Guo, W., Chen, C.: Tuning field-induced energy gap of bilayer graphene via interlayer spacing. Appl. Phys. Lett. 92, 243101 (2008)CrossRef Guo, Y., Guo, W., Chen, C.: Tuning field-induced energy gap of bilayer graphene via interlayer spacing. Appl. Phys. Lett. 92, 243101 (2008)CrossRef
14.
Zurück zum Zitat Drummond, C.: Electric-field-induced friction reduction and control. Phys. Rev. Lett. 109, 154302 (2012)CrossRef Drummond, C.: Electric-field-induced friction reduction and control. Phys. Rev. Lett. 109, 154302 (2012)CrossRef
15.
Zurück zum Zitat Wang, C., Chen, W., Zhang, Y., Sun, Q., Jia, Y.: Effects of vdW interaction and electric field on friction in MoS2. Tribol. Lett. 59, 1–8 (2015)CrossRef Wang, C., Chen, W., Zhang, Y., Sun, Q., Jia, Y.: Effects of vdW interaction and electric field on friction in MoS2. Tribol. Lett. 59, 1–8 (2015)CrossRef
16.
Zurück zum Zitat Kress, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRef Kress, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRef
17.
Zurück zum Zitat Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)CrossRef Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)CrossRef
18.
Zurück zum Zitat Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)CrossRef Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)CrossRef
19.
Zurück zum Zitat Neugebauer, J., Scheffler, M.: Adsorbate–substrate and adsorbate–adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992)CrossRef Neugebauer, J., Scheffler, M.: Adsorbate–substrate and adsorbate–adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992)CrossRef
20.
Zurück zum Zitat Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)CrossRef Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)CrossRef
21.
Zurück zum Zitat Min, H., Sahu, B., Banerjee, S.K., MacDonald, A.H.: Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007)CrossRef Min, H., Sahu, B., Banerjee, S.K., MacDonald, A.H.: Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007)CrossRef
22.
Zurück zum Zitat Wu, M., Cao, C., Jiang, J.Z.: Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)CrossRef Wu, M., Cao, C., Jiang, J.Z.: Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)CrossRef
23.
Zurück zum Zitat Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)CrossRef Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)CrossRef
24.
Zurück zum Zitat Kim, Y.A., Fujisawa, K., Muramatsu, H., Hayashi, T., Endo, M., Fujimori, T., Kaneko, K., Terrones, M., Behrends, J., Eckmann, A., Casiraghi, C., Novoselov, K.S., Saito, R., Dresselhaus, M.S.: Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6, 6293–6300 (2012)CrossRef Kim, Y.A., Fujisawa, K., Muramatsu, H., Hayashi, T., Endo, M., Fujimori, T., Kaneko, K., Terrones, M., Behrends, J., Eckmann, A., Casiraghi, C., Novoselov, K.S., Saito, R., Dresselhaus, M.S.: Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6, 6293–6300 (2012)CrossRef
Metadaten
Titel
Tuning the Nanofriction Between Two Graphene Layers by External Electric Fields: A Density Functional Theory Study
verfasst von
Jianjun Wang
Jinming Li
Chong Li
Xiaolin Cai
Wenguang Zhu
Yu Jia
Publikationsdatum
01.01.2016
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2016
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-015-0624-0

Weitere Artikel der Ausgabe 1/2016

Tribology Letters 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.