Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2019

12.01.2019

Turbulence in a Localized Puff in a Pipe

verfasst von: Alexander Yakhot, Yuri Feldman, David Moxey, Spencer Sherwin, George Em Karniadakis

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have performed direct numerical simulations of a spatio-temporally intermittent flow in a pipe for Rem = 2250. From previous experiments and simulations of pipe flow, this value has been estimated as a threshold when the average speeds of upstream and downstream fronts of a puff are identical (Barkley et al., Nature 526, 550–553, 2015; Barkley et al., 2015). We investigated the structure of an individual puff by considering three-dimensional snapshots over a long time period. To assimilate the velocity data, we applied a conditional sampling based on the location of the maximum energy of the transverse (turbulent) motion. Specifically, at each time instance, we followed a turbulent puff by a three-dimensional moving window centered at that location. We collected a snapshot-ensemble (10000 time instances, snapshots) of the velocity fields acquired over T = 2000D/U time interval inside the moving window. The cross-plane velocity field inside the puff showed the dynamics of a developing turbulence. In particular, the analysis of the cross-plane radial motion yielded the illustration of the production of turbulent kinetic energy directly from the mean flow. A snapshot-ensemble averaging over 10000 snapshots revealed azimuthally arranged large-scale (coherent) structures indicating near-wall sweep and ejection activity. The localized puff is about 15-17 pipe diameters long and the flow regime upstream of its upstream edge and downstream of its leading edge is almost laminar. In the near-wall region, despite the low Reynolds number, the turbulence statistics, in particular, the distribution of turbulence intensities, Reynolds shear stress, skewness and flatness factors, become similar to a fully-developed turbulent pipe flow in the vicinity of the puff upstream edge. In the puff core, the velocity profile becomes flat and logarithmic. It is shown that this “fully-developed turbulent flash” is very narrow being about two pipe diameters long.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Thus, when we say “at the moving window trailing edge S01,” it also implies “slightly downstream of the upstream edge of the puff.”
 
2
“Low-speed” (w < 0) and “high-speed” (w > 0) are usually used as relative terms, and refer to deviations from the mean streamwise velocity value at that location.
 
3
In this study, we take into account that the near-wall ejection and sweeping correlate and are spatially close. Therefore, the computed range of \(|\text {R}_{u_{r},u_{r}}|>0.2\) leads us to consider these data as well correlated.
 
Literatur
1.
Zurück zum Zitat Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M., Hof, B.: The rise of fully turbulent flow. Nature 526, 550–553 (2015)CrossRef Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M., Hof, B.: The rise of fully turbulent flow. Nature 526, 550–553 (2015)CrossRef
2.
Zurück zum Zitat Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M., Hof, B.: The rise of fully turbulent flow. Available from: arXiv:1510.09143.pdf(2015) Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M., Hof, B.: The rise of fully turbulent flow. Available from: arXiv:1510.​09143.​pdf(2015)
3.
Zurück zum Zitat Wygnanski, I. J., Champagne, F. H.: On transition in a pipe. Part 1.The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335 (1973)CrossRef Wygnanski, I. J., Champagne, F. H.: On transition in a pipe. Part 1.The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335 (1973)CrossRef
4.
Zurück zum Zitat Wygnanski, I. J., Sokolov, M., Friedman, D.: On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283–304 (1975)CrossRef Wygnanski, I. J., Sokolov, M., Friedman, D.: On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283–304 (1975)CrossRef
6.
Zurück zum Zitat van Doorne, C. W. H., Westerweel, J.: The flow structure of a puff. Phil. Trans. R. Soc. Lond. A 367, 1045–1059 (2009)MathSciNetMATH van Doorne, C. W. H., Westerweel, J.: The flow structure of a puff. Phil. Trans. R. Soc. Lond. A 367, 1045–1059 (2009)MathSciNetMATH
7.
Zurück zum Zitat Hof, B., de Lozar, A., Avila, M., Tu, X., Schneider, T.: Eliminating turbulence in spatially intermittent flows. Science 327, 1491–1494 (2010)CrossRef Hof, B., de Lozar, A., Avila, M., Tu, X., Schneider, T.: Eliminating turbulence in spatially intermittent flows. Science 327, 1491–1494 (2010)CrossRef
8.
Zurück zum Zitat Moxey, D., Barkley, D.: Distinct large-scale turbulent-laminar states in transitional pipe flow. PNAS 107, 8091–8096 (2010)CrossRef Moxey, D., Barkley, D.: Distinct large-scale turbulent-laminar states in transitional pipe flow. PNAS 107, 8091–8096 (2010)CrossRef
9.
Zurück zum Zitat Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., Hof, B.: The onset of turbulence in pipe flow. Science 333, 192–196 (2011)CrossRefMATH Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., Hof, B.: The onset of turbulence in pipe flow. Science 333, 192–196 (2011)CrossRefMATH
10.
Zurück zum Zitat Shan, H., Ma, B., Zhang, Z., Nieuwstadt, F. T. M.: On transition in a pipe. Part 2.Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow. J. Fluid Mech. 387, 39–60 (1999)CrossRefMATH Shan, H., Ma, B., Zhang, Z., Nieuwstadt, F. T. M.: On transition in a pipe. Part 2.Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow. J. Fluid Mech. 387, 39–60 (1999)CrossRefMATH
11.
Zurück zum Zitat Priymak, V., Miyazaki, T.: Direct numerical simulation of equilibrium spatially localized structures in pipe flow. Phys. Fluids 16, 4221—4234 (2004)CrossRefMATH Priymak, V., Miyazaki, T.: Direct numerical simulation of equilibrium spatially localized structures in pipe flow. Phys. Fluids 16, 4221—4234 (2004)CrossRefMATH
12.
Zurück zum Zitat Priymak, V., Miyazaki, T.: Long-wave motions in turbulent shear flows. Phys. Fluids 6, 3454–3464 (1994)CrossRefMATH Priymak, V., Miyazaki, T.: Long-wave motions in turbulent shear flows. Phys. Fluids 6, 3454–3464 (1994)CrossRefMATH
13.
Zurück zum Zitat Shimizu, M., Kida, S.: A driving mechanism of a turbulent puff in pipe flow. Fluid Dyn. Res. 41(4), 045501 (2009)CrossRefMATH Shimizu, M., Kida, S.: A driving mechanism of a turbulent puff in pipe flow. Fluid Dyn. Res. 41(4), 045501 (2009)CrossRefMATH
14.
Zurück zum Zitat Song, B., Barkley, D., Avila, M., Hof, B.: Speed and structure of turbulent fronts in pipe flow. J. Fluid Mech. 813, 283–304 (2017)MathSciNetCrossRefMATH Song, B., Barkley, D., Avila, M., Hof, B.: Speed and structure of turbulent fronts in pipe flow. J. Fluid Mech. 813, 283–304 (2017)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Blackburn, H. M., Sherwin, S. J.: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comp. Phys. 197, 759–778 (2004)CrossRefMATH Blackburn, H. M., Sherwin, S. J.: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comp. Phys. 197, 759–778 (2004)CrossRefMATH
16.
Zurück zum Zitat Karniadakis, G. E., Israeli, M., Orszag, S. A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comp. Phys. 97, 414–443 (1991)MathSciNetCrossRefMATH Karniadakis, G. E., Israeli, M., Orszag, S. A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comp. Phys. 97, 414–443 (1991)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Chu, D., Henderson, R., Karniadakis, G. E.: Parallel spectral-element-Fourier simulation of turbulent flow over riblet-mounted surfaces. Theor. Comp. Fluid Dyn. 3, 219–229 (1992)CrossRefMATH Chu, D., Henderson, R., Karniadakis, G. E.: Parallel spectral-element-Fourier simulation of turbulent flow over riblet-mounted surfaces. Theor. Comp. Fluid Dyn. 3, 219–229 (1992)CrossRefMATH
18.
Zurück zum Zitat Moxey, D.: Spatio-temporal dynamics in pipe flow. PhD thesis, University of Warwick (2011) Moxey, D.: Spatio-temporal dynamics in pipe flow. PhD thesis, University of Warwick (2011)
19.
Zurück zum Zitat Moser, R. D., Moin, P.: Direct numerical simulation of curved turbulent channel flow. NASA Tech. Memo. 85974, 84–87 (1984) Moser, R. D., Moin, P.: Direct numerical simulation of curved turbulent channel flow. NASA Tech. Memo. 85974, 84–87 (1984)
20.
Zurück zum Zitat Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B, Wedin, H., Kerswell, R. R., Waleffe, F.: Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 1594–1598 (2004)CrossRef Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B, Wedin, H., Kerswell, R. R., Waleffe, F.: Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 1594–1598 (2004)CrossRef
21.
Zurück zum Zitat Willis, A. R., Kerswell, R. R.: Coherent structures in localized and global pipe turbulence. Phys. Rev. Lett. 100, 124501 (2008)CrossRef Willis, A. R., Kerswell, R. R.: Coherent structures in localized and global pipe turbulence. Phys. Rev. Lett. 100, 124501 (2008)CrossRef
22.
Zurück zum Zitat Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R., Nieuwstadt, F. T. M.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)CrossRef Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R., Nieuwstadt, F. T. M.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)CrossRef
23.
Zurück zum Zitat Moser, R. D., Kim, J., Mansour, N. N.: Direct numerical simulation of turbulent channel flow up to r e τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH Moser, R. D., Kim, J., Mansour, N. N.: Direct numerical simulation of turbulent channel flow up to r e τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH
24.
Zurück zum Zitat Kim, J., Moin, P., Moser, R. D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH Kim, J., Moin, P., Moser, R. D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH
Metadaten
Titel
Turbulence in a Localized Puff in a Pipe
verfasst von
Alexander Yakhot
Yuri Feldman
David Moxey
Spencer Sherwin
George Em Karniadakis
Publikationsdatum
12.01.2019
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-0002-8

Weitere Artikel der Ausgabe 1/2019

Flow, Turbulence and Combustion 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.