Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2-3/2020

08.01.2020

Turbulent Heat-Transfer Enhancement in Boundary Layers Exposed to Free-Stream Turbulence

verfasst von: Jiho You, Tamer A. Zaki

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2-3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct numerical simulations (DNS) are performed to study the effect of free-stream vortical forcing on a thermal turbulent boundary layer. In presence of external perturbations, the heat-transfer rate from the wall is increased relative to the unforced case. An explanation is provided, and starts from the free-stream forcing which enhances the Reynolds stresses inside the boundary layer, and in particular the wall-normal component. As a result, the wall-normal heat flux is also increased, which has the dual effect of distorting the base temperature profile and enhancing the production of scalar variance; both contribute to the increase in the wall heat-transfer rate. In addition, the flow sustains higher thermal fluctuations, even though the free-stream forcing is only vortical, and not thermal. These changes are accompanied by modification of the spectra of the thermal field in the outer region of the boundary layer, where large-scale thermal structures are formed in response to the large-scale velocity motions. In the near-wall region, the thermal structures are modulated by the outer hydrodynamic field and are strengthened relative to the unforced flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Blair, M.F.: Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development: Part I. Experimental data. Trans. ASME: J. Heat Transfer 105, 33–40 (1983)CrossRef Blair, M.F.: Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development: Part I. Experimental data. Trans. ASME: J. Heat Transfer 105, 33–40 (1983)CrossRef
2.
Zurück zum Zitat Simonich, J.C., Bradshaw, P.: Effect of free-stream turbulence on heat transfer through a turbulent boundary layer. Trans. ASME J. Heat Transfer 100, 671–677 (1978)CrossRef Simonich, J.C., Bradshaw, P.: Effect of free-stream turbulence on heat transfer through a turbulent boundary layer. Trans. ASME J. Heat Transfer 100, 671–677 (1978)CrossRef
3.
Zurück zum Zitat Hancock, P.E., Bradshaw, P.: The effect of free-stream turbulence on turbulent boundary layers. Trans. ASME: J. Fluids Engng. 105, 284–289 (1983) Hancock, P.E., Bradshaw, P.: The effect of free-stream turbulence on turbulent boundary layers. Trans. ASME: J. Fluids Engng. 105, 284–289 (1983)
4.
Zurück zum Zitat Ames, F.E., Moffat, R.J.: Heat transfer with high intensity, large scale turbulence: the flat plate turbulent boundary layer and the cylindrical stagnation point. Stanford University Report pp. HMT–44 (1990) Ames, F.E., Moffat, R.J.: Heat transfer with high intensity, large scale turbulence: the flat plate turbulent boundary layer and the cylindrical stagnation point. Stanford University Report pp. HMT–44 (1990)
5.
Zurück zum Zitat Maciejewski, P.K., Moffat, R.J.: Heat transfer with very high free-stream turbulence. i: experimental data. Trans. ASME J. Heat Transfer 114, 827–833 (1992)CrossRef Maciejewski, P.K., Moffat, R.J.: Heat transfer with very high free-stream turbulence. i: experimental data. Trans. ASME J. Heat Transfer 114, 827–833 (1992)CrossRef
6.
Zurück zum Zitat Thole, K.A., Bogard, D.G.: Enhanced heat transfer and shear stress due to high free-stream turbulence. Trans. ASME: J. Turbomachinery 117, 418–424 (1995)CrossRef Thole, K.A., Bogard, D.G.: Enhanced heat transfer and shear stress due to high free-stream turbulence. Trans. ASME: J. Turbomachinery 117, 418–424 (1995)CrossRef
7.
Zurück zum Zitat Thole, K.A., Bogard, D.G.: High freestream turbulence effects on turbulent boundary layers. Trans. ASME: J. Fluids Engng 118, 276–284 (1996)CrossRef Thole, K.A., Bogard, D.G.: High freestream turbulence effects on turbulent boundary layers. Trans. ASME: J. Fluids Engng 118, 276–284 (1996)CrossRef
8.
Zurück zum Zitat Péneau, F., Boisson, H.C., Djilali, N.: Large eddy simulation of the influence of high free-stream turbulence on a spatially evolving boundary layer. Int. J. Heat Fluid Flow 21, 640–647 (2000)CrossRef Péneau, F., Boisson, H.C., Djilali, N.: Large eddy simulation of the influence of high free-stream turbulence on a spatially evolving boundary layer. Int. J. Heat Fluid Flow 21, 640–647 (2000)CrossRef
9.
Zurück zum Zitat Li, Q., Schlatter, P., Henningson, D.S.: Simulations of heat transfer in a boundary layer subject to free-stream turbulence. J. Turbul. 11(45), 1–33 (2010) Li, Q., Schlatter, P., Henningson, D.S.: Simulations of heat transfer in a boundary layer subject to free-stream turbulence. J. Turbul. 11(45), 1–33 (2010)
10.
Zurück zum Zitat Dogan, E., Hanson, R.E., Ganapathisubramani, B.: Interactions of large-scale free-stream turbulence with turbulent boundary layers. J. Fluid Mech. 802, 79–107 (2016)MathSciNetCrossRef Dogan, E., Hanson, R.E., Ganapathisubramani, B.: Interactions of large-scale free-stream turbulence with turbulent boundary layers. J. Fluid Mech. 802, 79–107 (2016)MathSciNetCrossRef
11.
Zurück zum Zitat Sharp, N.S., Neuscamman, S., Warhaft, Z.: Effects of large-scale free stream turbulence on a turbulent boundary layer. Phys. Fluids 21(095), 105 (2009)MATH Sharp, N.S., Neuscamman, S., Warhaft, Z.: Effects of large-scale free stream turbulence on a turbulent boundary layer. Phys. Fluids 21(095), 105 (2009)MATH
12.
Zurück zum Zitat You, J., Zaki, T.A.: Conditional statistics and flow structures in turbulent boundary layers buffeted by free-stream disturbances. J. Fluid Mech. 866, 526–566 (2019)MathSciNetCrossRef You, J., Zaki, T.A.: Conditional statistics and flow structures in turbulent boundary layers buffeted by free-stream disturbances. J. Fluid Mech. 866, 526–566 (2019)MathSciNetCrossRef
13.
Zurück zum Zitat Dogan, E., Hearst, R.J., Ganapathisubramani, B.: Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence. Phil. Trans. R. Soc. A 375(2089), 20160,091 (2017)CrossRef Dogan, E., Hearst, R.J., Ganapathisubramani, B.: Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence. Phil. Trans. R. Soc. A 375(2089), 20160,091 (2017)CrossRef
14.
Zurück zum Zitat Hunt, J.C.R., Durbin, P.A.: Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24(6), 375–404 (1999)MathSciNetCrossRef Hunt, J.C.R., Durbin, P.A.: Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24(6), 375–404 (1999)MathSciNetCrossRef
15.
Zurück zum Zitat Zaki, T.A., Saha, S.: On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111–147 (2009)MathSciNetCrossRef Zaki, T.A., Saha, S.: On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111–147 (2009)MathSciNetCrossRef
16.
Zurück zum Zitat Rosenfeld, M., Kwak, D., Vinokur, M.: A fractional step solution method for the unsteady incompressible navier-stokes equations in generalized coordinate systems. J. Comput. Phys. 94, 102–137 (1991)CrossRef Rosenfeld, M., Kwak, D., Vinokur, M.: A fractional step solution method for the unsteady incompressible navier-stokes equations in generalized coordinate systems. J. Comput. Phys. 94, 102–137 (1991)CrossRef
17.
Zurück zum Zitat Nourgaliev, R.R., Theofanous, T.G.: High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set. J. Comput. Phys. 224, 836–866 (2007)CrossRef Nourgaliev, R.R., Theofanous, T.G.: High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set. J. Comput. Phys. 224, 836–866 (2007)CrossRef
18.
Zurück zum Zitat Zaki, T.A.: From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91, 451–473 (2013)CrossRef Zaki, T.A.: From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91, 451–473 (2013)CrossRef
19.
Zurück zum Zitat Zaki, T.A., Durbin, P.A., Wissink, J., Rodi, W.: Direct numerical simulation of by-pass and separation-induced transition in a linear compressor cascade. ASME Turbo Expo 2006: Power for Land, Sea, and Air 6, 1421–1429 (2006)CrossRef Zaki, T.A., Durbin, P.A., Wissink, J., Rodi, W.: Direct numerical simulation of by-pass and separation-induced transition in a linear compressor cascade. ASME Turbo Expo 2006: Power for Land, Sea, and Air 6, 1421–1429 (2006)CrossRef
20.
Zurück zum Zitat Jelly, T.O., Jung, S.Y., Zaki, T.A.: Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26(095), 102 (2014) Jelly, T.O., Jung, S.Y., Zaki, T.A.: Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26(095), 102 (2014)
21.
Zurück zum Zitat Lee, J., Jelly, T.O., Zaki, T.A.: Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 95, 277–300 (2015)CrossRef Lee, J., Jelly, T.O., Zaki, T.A.: Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 95, 277–300 (2015)CrossRef
22.
Zurück zum Zitat Lee, J., Jung, S.Y., Sung, H.J., Zaki, T.A.: Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196–225 (2013)MathSciNetCrossRef Lee, J., Jung, S.Y., Sung, H.J., Zaki, T.A.: Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196–225 (2013)MathSciNetCrossRef
23.
Zurück zum Zitat Lee, J., Jung, S.Y., Sung, H.J., Zaki, T.A.: Turbulent thermal boundary layers with temperature-dependent viscosity. Int. J. Heat Fluid Flow 49, 43–52 (2014)CrossRef Lee, J., Jung, S.Y., Sung, H.J., Zaki, T.A.: Turbulent thermal boundary layers with temperature-dependent viscosity. Int. J. Heat Fluid Flow 49, 43–52 (2014)CrossRef
24.
Zurück zum Zitat Lee, J., Sung, H.J., Zaki, T.A.: Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 819, 165–187 (2017)MathSciNetCrossRef Lee, J., Sung, H.J., Zaki, T.A.: Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 819, 165–187 (2017)MathSciNetCrossRef
25.
Zurück zum Zitat Renard, N., Deck, S.: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339–367 (2016)MathSciNetCrossRef Renard, N., Deck, S.: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339–367 (2016)MathSciNetCrossRef
26.
Zurück zum Zitat Wallace, J.M.: Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131–158 (2016)MathSciNetCrossRef Wallace, J.M.: Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131–158 (2016)MathSciNetCrossRef
27.
Zurück zum Zitat Bernardini, M., Pirozzoli, S.: Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23(061), 701 (2011) Bernardini, M., Pirozzoli, S.: Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23(061), 701 (2011)
28.
Zurück zum Zitat Hwang, J., Lee, J., Sung, H.J., Zaki, T.A.: Inner-outer interactions of large-scale structures in turbulent channel flow. J. Fluid Mech. 790, 128–157 (2016)MathSciNetCrossRef Hwang, J., Lee, J., Sung, H.J., Zaki, T.A.: Inner-outer interactions of large-scale structures in turbulent channel flow. J. Fluid Mech. 790, 128–157 (2016)MathSciNetCrossRef
Metadaten
Titel
Turbulent Heat-Transfer Enhancement in Boundary Layers Exposed to Free-Stream Turbulence
verfasst von
Jiho You
Tamer A. Zaki
Publikationsdatum
08.01.2020
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2-3/2020
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00071-7

Weitere Artikel der Ausgabe 2-3/2020

Flow, Turbulence and Combustion 2-3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.