Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2017

22.11.2016

Turbulent Scalar Mixing in a Skewed Jet in Crossflow: Experiments and Modeling

verfasst von: Kevin J. Ryan, Julien Bodart, Mikko Folkersma, Christopher J. Elkins, John K. Eaton

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Turbulent mixing of an inclined, skewed jet injected into a crossflow is investigated using MRI-based experiments and a high-fidelity LES of the same configuration. The MRI technique provides three-dimensional fields of mean velocity and mean jet concentration. The 30° skew of the jet relative to the crossflow produces a single dominant vortex which introduces spanwise asymmetries to the velocity and concentration fields. The turbulent scalar transport of the skewed jet is investigated in further detail using the LES, which is validated against the experimental measurements. Mixing is found to be highly anisotropic throughout the jet region. Isotropic turbulent diffusivity and viscosity are used to calculate an optimal value of the turbulent Schmidt number, which varies widely over the jet region and lies mostly outside of the typically accepted range 0.7 ≤ S c t ≤ 0.9. Finally, three common scalar flux models of increasing complexity are evaluated based on their ability to capture the anisotropy and predict the scalar concentration field of the present configuration. The higher order models are shown to better represent the turbulent scalar flux vector, leading to more accurate calculations of the concentration field. While more complex models are better able to capture the turbulent mixing, optimization of model constants is shown to significantly affect the results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aga, V., Abhari, R.S.: Influence of flow structure on compound angled film cooling effectiveness and heat transfer. J. Turbomach. 133(3), 031,029 (2011)CrossRef Aga, V., Abhari, R.S.: Influence of flow structure on compound angled film cooling effectiveness and heat transfer. J. Turbomach. 133(3), 031,029 (2011)CrossRef
2.
Zurück zum Zitat Khan, Z.U., Johnston, J.P.: On vortex generating jets. Int. J. Heat Fluid Flow 21(5), 506–511 (2000)CrossRef Khan, Z.U., Johnston, J.P.: On vortex generating jets. Int. J. Heat Fluid Flow 21(5), 506–511 (2000)CrossRef
3.
Zurück zum Zitat McGovern, K., Leylek, J.: A detailed analysis of film cooling physics: Part iicompound-angle injection with cylindrical holes. J. Turbomach. 122(1), 113–121 (2000)CrossRef McGovern, K., Leylek, J.: A detailed analysis of film cooling physics: Part iicompound-angle injection with cylindrical holes. J. Turbomach. 122(1), 113–121 (2000)CrossRef
4.
Zurück zum Zitat Johnson, P.L., Kapat, J.S.: Large-eddy simulations of a cylindrical film cooling hole. J. Thermophys. Heat Transfer 27(2), 255–273 (2013)CrossRef Johnson, P.L., Kapat, J.S.: Large-eddy simulations of a cylindrical film cooling hole. J. Thermophys. Heat Transfer 27(2), 255–273 (2013)CrossRef
5.
Zurück zum Zitat Ziefle, J., Kleiser, L.: Assessment of a film-cooling flow structure by large-eddy simulation. J. Turb. 9, N29 (2008)CrossRef Ziefle, J., Kleiser, L.: Assessment of a film-cooling flow structure by large-eddy simulation. J. Turb. 9, N29 (2008)CrossRef
6.
Zurück zum Zitat Walters, D.K., Leylek, J.H.: A systematic computational methodology applied to a three-dimensional film-cooling flowfield. J. Turbomachinery 119(4), 777–785 (1997)CrossRef Walters, D.K., Leylek, J.H.: A systematic computational methodology applied to a three-dimensional film-cooling flowfield. J. Turbomachinery 119(4), 777–785 (1997)CrossRef
7.
Zurück zum Zitat Ivanova, E.M., Noll, B.E., Aigner, M.: A numerical study on the turbulent schmidt numbers in a jet in crossflow. J. Eng. Gas Turb. Power 135(1), 011,505 (2013)CrossRef Ivanova, E.M., Noll, B.E., Aigner, M.: A numerical study on the turbulent schmidt numbers in a jet in crossflow. J. Eng. Gas Turb. Power 135(1), 011,505 (2013)CrossRef
8.
Zurück zum Zitat Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13(11), 2634–2649 (1970)CrossRef Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13(11), 2634–2649 (1970)CrossRef
9.
Zurück zum Zitat Abe, K., Suga, K.: Towards the development of a Reynolds-averaged algebraic turbulent scalar-flux model. Int. J. Heat Fluid Flow 22(1), 19–29 (2001)CrossRef Abe, K., Suga, K.: Towards the development of a Reynolds-averaged algebraic turbulent scalar-flux model. Int. J. Heat Fluid Flow 22(1), 19–29 (2001)CrossRef
10.
Zurück zum Zitat Rossi, R., Iaccarino, G.: Numerical simulation of scalar dispersion downstream of a square obstacle using gradient-transport type models. Atmosph. Environ. 43(16), 2518–2531 (2009)CrossRef Rossi, R., Iaccarino, G.: Numerical simulation of scalar dispersion downstream of a square obstacle using gradient-transport type models. Atmosph. Environ. 43(16), 2518–2531 (2009)CrossRef
11.
Zurück zum Zitat Ling, J., Ryan, K.J., Bodart, J., Eaton, J.K.: Analysis of turbulent scalar flux models for a discrete hole film cooling flow. J. Turbomach. 138(1), 011,006 (2016)CrossRef Ling, J., Ryan, K.J., Bodart, J., Eaton, J.K.: Analysis of turbulent scalar flux models for a discrete hole film cooling flow. J. Turbomach. 138(1), 011,006 (2016)CrossRef
12.
Zurück zum Zitat Li, X., Qin, Y., Ren, J., Jiang, H.: Algebraic anisotropic turbulence modeling of compound angled film cooling validated by particle image velocimetry and pressure sensitive paint measurements. J. Heat Transfer 136(3), 032,201 (2014)CrossRef Li, X., Qin, Y., Ren, J., Jiang, H.: Algebraic anisotropic turbulence modeling of compound angled film cooling validated by particle image velocimetry and pressure sensitive paint measurements. J. Heat Transfer 136(3), 032,201 (2014)CrossRef
13.
Zurück zum Zitat Azzi, A., Lakehal, D.: Perspectives in modeling film cooling of turbine blades by transcending conventional two-equation turbulence models. J. Turbomach. 124(3), 472–484 (2002)CrossRef Azzi, A., Lakehal, D.: Perspectives in modeling film cooling of turbine blades by transcending conventional two-equation turbulence models. J. Turbomach. 124(3), 472–484 (2002)CrossRef
14.
Zurück zum Zitat Pelc, N., Sommer, F., Li, K., Brosnan, T., Herfkens, R., Enzmann, D.: Quantitative magnetic resonance flow imaging. Magn. Resonan. Quart. 10(3), 125–147 (1994) Pelc, N., Sommer, F., Li, K., Brosnan, T., Herfkens, R., Enzmann, D.: Quantitative magnetic resonance flow imaging. Magn. Resonan. Quart. 10(3), 125–147 (1994)
15.
Zurück zum Zitat Benson, M.J., Elkins, C.J., Mobley, P.D., Alley, M.T., Eaton, J.K.: Three-dimensional concentration field measurements in a mixing layer using magnetic resonance imaging. Exper. Fluids 49(1), 43–55 (2010)CrossRef Benson, M.J., Elkins, C.J., Mobley, P.D., Alley, M.T., Eaton, J.K.: Three-dimensional concentration field measurements in a mixing layer using magnetic resonance imaging. Exper. Fluids 49(1), 43–55 (2010)CrossRef
16.
Zurück zum Zitat Bodart, J., Coletti, F., Bermejo-Moreno, I., Eaton, J.K.: High-fidelity simulation of a turbulent inclined jet in a crossflow. Center for Turbulence Research annual research brief, Stanford University, Stanford, CA (2013) Bodart, J., Coletti, F., Bermejo-Moreno, I., Eaton, J.K.: High-fidelity simulation of a turbulent inclined jet in a crossflow. Center for Turbulence Research annual research brief, Stanford University, Stanford, CA (2013)
17.
Zurück zum Zitat Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)CrossRefMATH Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)CrossRefMATH
Metadaten
Titel
Turbulent Scalar Mixing in a Skewed Jet in Crossflow: Experiments and Modeling
verfasst von
Kevin J. Ryan
Julien Bodart
Mikko Folkersma
Christopher J. Elkins
John K. Eaton
Publikationsdatum
22.11.2016
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-016-9785-7

Weitere Artikel der Ausgabe 3/2017

Flow, Turbulence and Combustion 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.