Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2022

03.03.2022 | Technical Article

Two-Step Sintering of TiO2-ZrO2-Y2O3 Nanocomposite Ceramics with Enhanced Mechanical Properties

verfasst von: Pan Luo, Jin Zhang, Feng Zhang, Kuo Ma, Junwei Xia, Wei Wang, Liping Nie

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Yttria-stabilized zirconia (YSZ, Y2O3-ZrO2) ceramic with titanium dioxide nanoparticle (nanoTiO2) is prepared using conventional pressureless and two-step sintering (TSS) methods. The microstructure, phase composition, and mechanical properties of TSS-TiO2-ZrO2-Y2O3 nanocomposite ceramics are compared to those of the ceramics sintered using conventional sintering. The effect of TSS and nanoparticles on the sintering densification of the YSZ ceramics is investigated. X-ray diffractometry revealed that nanoTiO2 destabilizes c-ZrO2 and stabilizes t-ZrO2 in the YSZ. In addition, TSS is more conducive for grain refinement and sintering densification of the TiO2-ZrO2-Y2O3 nanocomposite ceramics; the average grain size of the samples decreased from 1.446 (conventional sintering) to 0.492 μm (TSS). Meanwhile, the relative density and sintering shrinkage of the TSS-1450 sample reached the maximum (98.23% and 22.92%, respectively) at a nanoTiO2 fraction of 7 wt%. The maximum microhardness and bending strength of the TSS-1450 ceramic matrix with 7-wt% nanoTiO2 were 1823 HV and 505 MPa, respectively. The nanoparticles distributed in the grain boundary induce the crack to the matrix, which induces the transgranular fracture, and nanoTiO2 improves the densification and mechanical properties of YSZ ceramics more than titanium dioxide microparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F.S. Jazi, A.H. Pakseresht, M.S. Asl, A. Esmaeilkhanian, H.N. Khoramabadi, H.W. Jang and M. Shokouhimehr, Hydroxyapatite Consolidated by Zirconia: Applications for Dental Implant, J. Compos. Compd., 2020, 2(2), p 26–34. F.S. Jazi, A.H. Pakseresht, M.S. Asl, A. Esmaeilkhanian, H.N. Khoramabadi, H.W. Jang and M. Shokouhimehr, Hydroxyapatite Consolidated by Zirconia: Applications for Dental Implant, J. Compos. Compd., 2020, 2(2), p 26–34.
2.
Zurück zum Zitat P. Luo, J. Zhang, T. Lin, X. Ran and Y. Liu, Effects of Added Aluminum Chromium Slag on the Structure and Mechanical Properties of Colored Zirconia Ceramics, Int. J. Appl. Ceram. Technol., 2020, 17(6), p 2659–2668. CrossRef P. Luo, J. Zhang, T. Lin, X. Ran and Y. Liu, Effects of Added Aluminum Chromium Slag on the Structure and Mechanical Properties of Colored Zirconia Ceramics, Int. J. Appl. Ceram. Technol., 2020, 17(6), p 2659–2668. CrossRef
3.
Zurück zum Zitat D. Panthi, N. Hedayat and Y. Du, Densification Behavior of Yttria-Stabilized Zirconia Powders for Solid Oxide Fuel Cell electrolytes, J. Adv. Ceram., 2018, 7(4), p 325–335. CrossRef D. Panthi, N. Hedayat and Y. Du, Densification Behavior of Yttria-Stabilized Zirconia Powders for Solid Oxide Fuel Cell electrolytes, J. Adv. Ceram., 2018, 7(4), p 325–335. CrossRef
4.
Zurück zum Zitat O. Melikhova, J. Čížek, I. Procházka, T.E. Konstantinova and I.A. Danilenko, Defect Studies of Yttria Stabilized Zirconia with Chromia Additive, Phys. Procedia, 2012, 35, p 134–139. CrossRef O. Melikhova, J. Čížek, I. Procházka, T.E. Konstantinova and I.A. Danilenko, Defect Studies of Yttria Stabilized Zirconia with Chromia Additive, Phys. Procedia, 2012, 35, p 134–139. CrossRef
5.
Zurück zum Zitat P. Luo, J. Zhang, Z. You, X. Ran and S. Li, Effect of TiO2 Content on the Microstructure and Mechanical and Wear Properties of Yttria-Stabilized Zirconia Ceramics Prepared by Pressureless Sintering, Mater. Res. Express, 2020, 6(12), p 125211. CrossRef P. Luo, J. Zhang, Z. You, X. Ran and S. Li, Effect of TiO2 Content on the Microstructure and Mechanical and Wear Properties of Yttria-Stabilized Zirconia Ceramics Prepared by Pressureless Sintering, Mater. Res. Express, 2020, 6(12), p 125211. CrossRef
6.
Zurück zum Zitat Y. Xia, J. Mou, G. Deng, S. Wan, K. Tieu, H. Zhu and Q. Xue, Sintered ZrO2 –TiO2 Ceramic Composite and Its Mechanical Appraisal, Ceram. Int., 2020, 46(1), p 775–785. CrossRef Y. Xia, J. Mou, G. Deng, S. Wan, K. Tieu, H. Zhu and Q. Xue, Sintered ZrO2 –TiO2 Ceramic Composite and Its Mechanical Appraisal, Ceram. Int., 2020, 46(1), p 775–785. CrossRef
7.
Zurück zum Zitat K. Zhang and Q.V. Le, Bioactive Glass Coated Zirconia for Dental Implants: A Review, J. Compos. Compd., 2020, 2(2), p 10–17. K. Zhang and Q.V. Le, Bioactive Glass Coated Zirconia for Dental Implants: A Review, J. Compos. Compd., 2020, 2(2), p 10–17.
8.
Zurück zum Zitat P. Kohorst, L. Borchers, J. Strempel, M. Stiesch, T. Hassel, F.-W. Bach and C. Hübsch, Low-Temperature Degradation of Different Zirconia Ceramics for Dental Applications, Acta Biomater., 2012, 8(3), p 1213–1220. CrossRef P. Kohorst, L. Borchers, J. Strempel, M. Stiesch, T. Hassel, F.-W. Bach and C. Hübsch, Low-Temperature Degradation of Different Zirconia Ceramics for Dental Applications, Acta Biomater., 2012, 8(3), p 1213–1220. CrossRef
9.
Zurück zum Zitat M. Cattani-Lorente, S.S. Scherrer, P. Ammann, M. Jobin and H.A. Wiskott, Low Temperature Degradation of a Y-TZP Dental Ceramic, Acta Biomater., 2011, 7(2), p 858–865. CrossRef M. Cattani-Lorente, S.S. Scherrer, P. Ammann, M. Jobin and H.A. Wiskott, Low Temperature Degradation of a Y-TZP Dental Ceramic, Acta Biomater., 2011, 7(2), p 858–865. CrossRef
10.
Zurück zum Zitat D. Hotza, D.E. García and R.H.R. Castro, Obtaining Highly Dense YSZ Nanoceramics by Pressureless, Unassisted Sintering, Int. Mater. Rev., 2015, 60(7), p 353–357. CrossRef D. Hotza, D.E. García and R.H.R. Castro, Obtaining Highly Dense YSZ Nanoceramics by Pressureless, Unassisted Sintering, Int. Mater. Rev., 2015, 60(7), p 353–357. CrossRef
11.
Zurück zum Zitat M.H. Bocanegra-Bernal and S.D.D.L. Torre, Phase Transitions in Zirconium Dioxide and Related Materials for High Performance Engineering Ceramics, J. Mater. Sci., 2002, 37(23), p 4947–4971. CrossRef M.H. Bocanegra-Bernal and S.D.D.L. Torre, Phase Transitions in Zirconium Dioxide and Related Materials for High Performance Engineering Ceramics, J. Mater. Sci., 2002, 37(23), p 4947–4971. CrossRef
12.
Zurück zum Zitat V. Kharton, F.M.B. Marques and A. Atkinson, Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review, ChemInform, 2005, 174(1–4), p 135–149. V. Kharton, F.M.B. Marques and A. Atkinson, Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review, ChemInform, 2005, 174(1–4), p 135–149.
13.
Zurück zum Zitat R. Garvie, R. Hannink, R. Hughan, N. Mckinnon and R. Stringer, Strong and Partially Stabilized Zirconia Ceramics, J. Aust. Ceram. Soc., 1977, 13(1), p 8–11. R. Garvie, R. Hannink, R. Hughan, N. Mckinnon and R. Stringer, Strong and Partially Stabilized Zirconia Ceramics, J. Aust. Ceram. Soc., 1977, 13(1), p 8–11.
14.
Zurück zum Zitat J. Alonso, F. Rodríguez-Rojas, O. Borrero-López, A.L. Ortiz and F. Guiberteau, Effect of Sintering Duration on the Sliding-Wear Resistance of 3Y-TZP Dental Ceramics, Int. J. Appl. Ceram. Technol., 2019, 16(5), p 1954–1961. CrossRef J. Alonso, F. Rodríguez-Rojas, O. Borrero-López, A.L. Ortiz and F. Guiberteau, Effect of Sintering Duration on the Sliding-Wear Resistance of 3Y-TZP Dental Ceramics, Int. J. Appl. Ceram. Technol., 2019, 16(5), p 1954–1961. CrossRef
15.
Zurück zum Zitat S. Inamura, H. Miyamoto, Y. Imaida, M. Takagawa, K. Hirota and O. Yamaguchi, Formation and Hot Isostatic Pressing of ZrO2 Solid Solution in the System ZrO2 -Al2O3, J. Mater. Sci., 1994, 29(18), p 4913–4917. CrossRef S. Inamura, H. Miyamoto, Y. Imaida, M. Takagawa, K. Hirota and O. Yamaguchi, Formation and Hot Isostatic Pressing of ZrO2 Solid Solution in the System ZrO2 -Al2O3, J. Mater. Sci., 1994, 29(18), p 4913–4917. CrossRef
16.
Zurück zum Zitat H. Tsubakino, R. Nozato and M. Hamamoto, Effect of Alumina Addition on the Tetragonal-to-Monoclinic Phase Transformation in Zirconia–3 mol% Yttria, J. Am. Ceram. Soc., 1991, 74(2), p 440–443. CrossRef H. Tsubakino, R. Nozato and M. Hamamoto, Effect of Alumina Addition on the Tetragonal-to-Monoclinic Phase Transformation in Zirconia–3 mol% Yttria, J. Am. Ceram. Soc., 1991, 74(2), p 440–443. CrossRef
17.
Zurück zum Zitat H. Watanabe and M. Chigasaki, The Effect of Al2O3 or SiO2 Addition on the Thermal Shock Resistance of Y2O3-Stabilized ZrO2, J. Ceram. Assoc. Jpn., 1986, 94(1086), p 255–260. CrossRef H. Watanabe and M. Chigasaki, The Effect of Al2O3 or SiO2 Addition on the Thermal Shock Resistance of Y2O3-Stabilized ZrO2, J. Ceram. Assoc. Jpn., 1986, 94(1086), p 255–260. CrossRef
18.
Zurück zum Zitat M. Kihara, T. Ogata, K. Nakamura and K. Kobayashi, Effects of Al2O3 Addition on Mechanical Properties and Microstructures of Y-TZP, J. Ceram. Soc. Jpn., 1988, 96(1114), p 646–653. CrossRef M. Kihara, T. Ogata, K. Nakamura and K. Kobayashi, Effects of Al2O3 Addition on Mechanical Properties and Microstructures of Y-TZP, J. Ceram. Soc. Jpn., 1988, 96(1114), p 646–653. CrossRef
19.
Zurück zum Zitat M.J. Readey, R.-R. Lee, J.W. Halloran and A.H. Heuer, Processing and Sintering of Ultrafine MgO-ZrO2 and (MgO, Y2O3)-ZrO2 Powders, J. Am. Ceram. Soc., 1990, 73(6), p 1499–1503. CrossRef M.J. Readey, R.-R. Lee, J.W. Halloran and A.H. Heuer, Processing and Sintering of Ultrafine MgO-ZrO2 and (MgO, Y2O3)-ZrO2 Powders, J. Am. Ceram. Soc., 1990, 73(6), p 1499–1503. CrossRef
20.
Zurück zum Zitat K. Narayanan, C. Sakthivel and I. Prabha, MgO-ZrO2 Mixed Nanocomposites: Fabrication Methods and Applications, Mater. Today Sustainability, 2019, 3–4, p 100007. K. Narayanan, C. Sakthivel and I. Prabha, MgO-ZrO2 Mixed Nanocomposites: Fabrication Methods and Applications, Mater. Today Sustainability, 2019, 3–4, p 100007.
21.
Zurück zum Zitat S.T. Gulati, J.D. Helfinstine and A.D. Davis, Determination of Some Useful Properties of Partially Stabilized Zirconia and the Application to Extrusion Dies, Am. Ceram. Soc. Bull., 1980, 59(2), p 211–214. S.T. Gulati, J.D. Helfinstine and A.D. Davis, Determination of Some Useful Properties of Partially Stabilized Zirconia and the Application to Extrusion Dies, Am. Ceram. Soc. Bull., 1980, 59(2), p 211–214.
22.
Zurück zum Zitat H. Naito and H. Arashi, Electrical Properties of ZrO2-TiO2-Y2O3 System, Solid State Ionics, 1992, 53–56(7), p 436–441. CrossRef H. Naito and H. Arashi, Electrical Properties of ZrO2-TiO2-Y2O3 System, Solid State Ionics, 1992, 53–56(7), p 436–441. CrossRef
23.
Zurück zum Zitat C.-J. Wang and C.-Y. Huang, Effect of TiO2 Addition on the Sintering Behavior Hardness and Fracture Toughness of an Ultrafine Alumina, Mater. Sci. Eng. A, 2008, 492(12), p 306–310. C.-J. Wang and C.-Y. Huang, Effect of TiO2 Addition on the Sintering Behavior Hardness and Fracture Toughness of an Ultrafine Alumina, Mater. Sci. Eng. A, 2008, 492(12), p 306–310.
24.
Zurück zum Zitat A.K. Soh, D.-N. Fang and Z.-X. Dong, Analysis of Toughening Mechanisms of ZrO2/Nano-SiC Ceramic Composites, J. Compos. Mater., 2004, 38(3), p 227–241. CrossRef A.K. Soh, D.-N. Fang and Z.-X. Dong, Analysis of Toughening Mechanisms of ZrO2/Nano-SiC Ceramic Composites, J. Compos. Mater., 2004, 38(3), p 227–241. CrossRef
25.
Zurück zum Zitat K. Niihara, New Design Concept of Structural Ceramics, J. Ceram. Soc. Jpn., 2010, 99(1154), p 974–982. CrossRef K. Niihara, New Design Concept of Structural Ceramics, J. Ceram. Soc. Jpn., 2010, 99(1154), p 974–982. CrossRef
26.
Zurück zum Zitat I. Levin, W.D. Kaplan, D.G. Brandon and T. Wieder, Residual Stresses in Alumina-SiC Nanocomposites, Acta Metall. Mater., 1994, 42(4), p 1147–1154. CrossRef I. Levin, W.D. Kaplan, D.G. Brandon and T. Wieder, Residual Stresses in Alumina-SiC Nanocomposites, Acta Metall. Mater., 1994, 42(4), p 1147–1154. CrossRef
27.
Zurück zum Zitat S. Sato, M.-C. Chu, Y. Kobayashi and K. Ando, Influence of SiC Particle Size on Microstructure and Mechanical Properties of Si3N4/SiC Composite Ceramics, J. Ceram. Soc. Jpn., 1996, 104(1215), p 1035–1039. CrossRef S. Sato, M.-C. Chu, Y. Kobayashi and K. Ando, Influence of SiC Particle Size on Microstructure and Mechanical Properties of Si3N4/SiC Composite Ceramics, J. Ceram. Soc. Jpn., 1996, 104(1215), p 1035–1039. CrossRef
28.
Zurück zum Zitat A. Sawaguchi, K. Toda and K. Niihara, Mechanical and Electrical Properties of Al2O3/SiC Nano-Composites, J. Ceram. Soc. Jpn., 1991, 99(6), p 523–526. CrossRef A. Sawaguchi, K. Toda and K. Niihara, Mechanical and Electrical Properties of Al2O3/SiC Nano-Composites, J. Ceram. Soc. Jpn., 1991, 99(6), p 523–526. CrossRef
29.
Zurück zum Zitat K. Niihara, N. Ünal and A. Nakahira, Mechanical Properties of (Y-TZP) — Alumina-Silicon Carbide Nanocomposites and the Phase Stability of Y-TZP Particles in it, J. Mater. Sci., 1994, 29, p 164–168. CrossRef K. Niihara, N. Ünal and A. Nakahira, Mechanical Properties of (Y-TZP) — Alumina-Silicon Carbide Nanocomposites and the Phase Stability of Y-TZP Particles in it, J. Mater. Sci., 1994, 29, p 164–168. CrossRef
30.
Zurück zum Zitat G. Pezzotti, T. Nishida and M. Sakai, Physical Limitations of the Inherent Toughness and Strength in Ceramic-Ceramic and Ceramic-Metal Nanocomposites, J. Ceram. Soc. Jpn., 1995, 103(9), p 901–909. CrossRef G. Pezzotti, T. Nishida and M. Sakai, Physical Limitations of the Inherent Toughness and Strength in Ceramic-Ceramic and Ceramic-Metal Nanocomposites, J. Ceram. Soc. Jpn., 1995, 103(9), p 901–909. CrossRef
31.
Zurück zum Zitat H. Tan and W. Yang, Toughening Mechanisms of Nano-Composite Ceramics, Mech. Mater., 1998, 30(2), p 111–123. CrossRef H. Tan and W. Yang, Toughening Mechanisms of Nano-Composite Ceramics, Mech. Mater., 1998, 30(2), p 111–123. CrossRef
32.
Zurück zum Zitat N.J. Lóh, L. Simão, C.A. Faller, A.D. Noni and O.R.K. Montedo, A Review of Two-Step Sintering for Ceramics, Ceram. Int., 2016, 42(11), p 12556–12572. CrossRef N.J. Lóh, L. Simão, C.A. Faller, A.D. Noni and O.R.K. Montedo, A Review of Two-Step Sintering for Ceramics, Ceram. Int., 2016, 42(11), p 12556–12572. CrossRef
33.
Zurück zum Zitat M.J. Mayo, Processing of Nanocrystalline Ceramics from Ultrafine Particles, Int. Mater. Rev., 1996, 41(3), p 85–115. CrossRef M.J. Mayo, Processing of Nanocrystalline Ceramics from Ultrafine Particles, Int. Mater. Rev., 1996, 41(3), p 85–115. CrossRef
34.
Zurück zum Zitat A. Ragulya and V.V. Skorokhod, Rate-Controlled Sintering of Ultrafine Nickel Powder, Nanostruct. Mater., 1995, 5(7–8), p 835–843. CrossRef A. Ragulya and V.V. Skorokhod, Rate-Controlled Sintering of Ultrafine Nickel Powder, Nanostruct. Mater., 1995, 5(7–8), p 835–843. CrossRef
35.
Zurück zum Zitat M.L. Huckabee, T.M. Hare and H. Palmour, Rate Controlled Sintering as a Processing Method, Processing of Crystalline Ceramics. R.F. Davis, T.M. Hare, H. Palmour Ed., Springer, Boston, 1978, p 205–215CrossRef M.L. Huckabee, T.M. Hare and H. Palmour, Rate Controlled Sintering as a Processing Method, Processing of Crystalline Ceramics. R.F. Davis, T.M. Hare, H. Palmour Ed., Springer, Boston, 1978, p 205–215CrossRef
36.
Zurück zum Zitat H. Palmour, Rate controlled sintering for ceramics and selected powder metals, Science of sintering: new directions for materials processing and microstructural control. D.P. Uskoković, H. Palmour, R.M. Spriggs Ed., Springer, Boston, 1989, p 337–356CrossRef H. Palmour, Rate controlled sintering for ceramics and selected powder metals, Science of sintering: new directions for materials processing and microstructural control. D.P. Uskoković, H. Palmour, R.M. Spriggs Ed., Springer, Boston, 1989, p 337–356CrossRef
37.
Zurück zum Zitat M.-Y. Chu, L.C.D. Jonghe, M.K.F. Lin and F.J.T. Lin, Recoarsening to Improve Microstructure and Sintering of Powder Compacts, J. Am. Ceram. Soc., 1991, 74(1), p 2902–2911. CrossRef M.-Y. Chu, L.C.D. Jonghe, M.K.F. Lin and F.J.T. Lin, Recoarsening to Improve Microstructure and Sintering of Powder Compacts, J. Am. Ceram. Soc., 1991, 74(1), p 2902–2911. CrossRef
38.
Zurück zum Zitat I.-W. Chen and X.-H. Wang, Sintering Dense Nanocrystalline Ceramics Without Final-Stage Grain Growth, Nat., 2000, 404(6774), p 168–171. CrossRef I.-W. Chen and X.-H. Wang, Sintering Dense Nanocrystalline Ceramics Without Final-Stage Grain Growth, Nat., 2000, 404(6774), p 168–171. CrossRef
39.
Zurück zum Zitat K. Matsui, H. Yoshida and Y. Ikuhara, Grain-Boundary Structure and Microstructure Development Mechanism in 2–8mol% Yttria-Stabilized Zirconia Polycrystals, Acta Mater., 2008, 56(6), p 1315–1325. CrossRef K. Matsui, H. Yoshida and Y. Ikuhara, Grain-Boundary Structure and Microstructure Development Mechanism in 2–8mol% Yttria-Stabilized Zirconia Polycrystals, Acta Mater., 2008, 56(6), p 1315–1325. CrossRef
40.
Zurück zum Zitat Y. Dong and I.-W. Chen, Mobility Transition at Grain Boundaries in Two-Step Sintered 8mol% Yttria-Stabilized Zirconia, J. Am. Ceram. Soc., 2018, 101(5), p 1857–1869. CrossRef Y. Dong and I.-W. Chen, Mobility Transition at Grain Boundaries in Two-Step Sintered 8mol% Yttria-Stabilized Zirconia, J. Am. Ceram. Soc., 2018, 101(5), p 1857–1869. CrossRef
41.
Zurück zum Zitat J.-G. Duh, H.-T. Dai and W.-Y. Hsu, Synthesis and Sintering Behaviour in CeO2-ZrO2 Ceramics, J. Mater. Sci., 1988, 23(8), p 2786–2791. CrossRef J.-G. Duh, H.-T. Dai and W.-Y. Hsu, Synthesis and Sintering Behaviour in CeO2-ZrO2 Ceramics, J. Mater. Sci., 1988, 23(8), p 2786–2791. CrossRef
42.
Zurück zum Zitat M.J. Banniste and J.M. Barne, Solubility of TiO2 in ZrO2, Commun. Am. Ceram. Soc., 1986, 69(11), p C269–C271. M.J. Banniste and J.M. Barne, Solubility of TiO2 in ZrO2, Commun. Am. Ceram. Soc., 1986, 69(11), p C269–C271.
43.
Zurück zum Zitat J. Frank, H. Brown and P. Duwez, The Zirconia-Titania System, J. Am. Ceram. Soc., 1954, 37(3), p 129–132. CrossRef J. Frank, H. Brown and P. Duwez, The Zirconia-Titania System, J. Am. Ceram. Soc., 1954, 37(3), p 129–132. CrossRef
44.
Zurück zum Zitat C.L. Lin, D. Gan and P. Shen, The Effects of TiO2 Addition on the Microstructure and Transformation of ZrO2 with 3 and 6 mol.% Y2O3, Mater. Sci. Eng. A, 1990, 129(1), p 147–155. CrossRef C.L. Lin, D. Gan and P. Shen, The Effects of TiO2 Addition on the Microstructure and Transformation of ZrO2 with 3 and 6 mol.% Y2O3, Mater. Sci. Eng. A, 1990, 129(1), p 147–155. CrossRef
45.
Zurück zum Zitat A. Khaskhoussi, L. Calabrese, J. Bouaziz and E. Proverbio, Effect of TiO2 Addition on Microstructure of Zirconia/Alumina Sintered Ceramics, Ceram. Int., 2017, 43(13), p 10392–10402. CrossRef A. Khaskhoussi, L. Calabrese, J. Bouaziz and E. Proverbio, Effect of TiO2 Addition on Microstructure of Zirconia/Alumina Sintered Ceramics, Ceram. Int., 2017, 43(13), p 10392–10402. CrossRef
46.
Zurück zum Zitat U. Troitzsch and D.J. Ellis, The ZrO2-TiO2 Phase Diagram, J. Mater. Sci., 2005, 40(17), p 4571–4577. CrossRef U. Troitzsch and D.J. Ellis, The ZrO2-TiO2 Phase Diagram, J. Mater. Sci., 2005, 40(17), p 4571–4577. CrossRef
47.
Zurück zum Zitat T. Chen, S. Tekeli, R.P. Dillon and M.L. Mecartney, Phase stability, Microstructural Evolution and Room Temperature Mechanical Properties of TiO2 Doped 8mol% Y2O3 Stabilized ZrO2 (8Y-CSZ), Ceram. Int., 2008, 34(2), p 365–370. CrossRef T. Chen, S. Tekeli, R.P. Dillon and M.L. Mecartney, Phase stability, Microstructural Evolution and Room Temperature Mechanical Properties of TiO2 Doped 8mol% Y2O3 Stabilized ZrO2 (8Y-CSZ), Ceram. Int., 2008, 34(2), p 365–370. CrossRef
48.
Zurück zum Zitat C.P. Cameron and R. Raj, Grain-Growth Transition During Sintering of Colloidally Prepared Alumina Powder Compacts, J. Am. Ceram. Soc., 1988, 71(12), p 1031–1035. CrossRef C.P. Cameron and R. Raj, Grain-Growth Transition During Sintering of Colloidally Prepared Alumina Powder Compacts, J. Am. Ceram. Soc., 1988, 71(12), p 1031–1035. CrossRef
49.
Zurück zum Zitat M. Yi, T. Liu, J. Li, C. Wang, Y. Mo, X. Wang and Y. Wei, High Li-ion Conductivity of Al-free Li7-3x Gax La3 Zr2O12 Solid Electrolyte Prepared by Liquid-Phase Sintering, J. Solid State Electrochem., 2019, 23, p 1249–1256. CrossRef M. Yi, T. Liu, J. Li, C. Wang, Y. Mo, X. Wang and Y. Wei, High Li-ion Conductivity of Al-free Li7-3x Gax La3 Zr2O12 Solid Electrolyte Prepared by Liquid-Phase Sintering, J. Solid State Electrochem., 2019, 23, p 1249–1256. CrossRef
50.
Zurück zum Zitat R.M. German, P. Suri and S.J. Park, Review: Liquid Phase Sintering, J. Mater. Sci., 2009, 44(1), p 1–39. CrossRef R.M. German, P. Suri and S.J. Park, Review: Liquid Phase Sintering, J. Mater. Sci., 2009, 44(1), p 1–39. CrossRef
51.
Zurück zum Zitat S.-C. Yang and R.M. Germa, Grain Growth Kinetics in Liquid-Phase-Sintered Zinc Oxide-Barium Oxide Ceramics, J. Am. Ceram. Soc., 1991, 74(12), p 3085–3090. CrossRef S.-C. Yang and R.M. Germa, Grain Growth Kinetics in Liquid-Phase-Sintered Zinc Oxide-Barium Oxide Ceramics, J. Am. Ceram. Soc., 1991, 74(12), p 3085–3090. CrossRef
52.
Zurück zum Zitat Y. Zhou, K. Hirao, M. Toriyama, Y. Yamauchi and S. Kanzaki, Effects of Intergranular Phase Chemistry on the Microstructure and Mechanical Properties of Silicon Carbide Ceramics Densified with Rare-Earth Oxide and Alumina Additions, J. Am. Ceram. Soc., 2001, 84(7), p 1642–1644. CrossRef Y. Zhou, K. Hirao, M. Toriyama, Y. Yamauchi and S. Kanzaki, Effects of Intergranular Phase Chemistry on the Microstructure and Mechanical Properties of Silicon Carbide Ceramics Densified with Rare-Earth Oxide and Alumina Additions, J. Am. Ceram. Soc., 2001, 84(7), p 1642–1644. CrossRef
53.
Zurück zum Zitat A. Noviyantoand and D.-H. Yoon, Rare-Earth Oxide Additives for the Sintering of Silicon Carbide, Diamond Relat. Mater., 2013, 38(1), p 124–130. CrossRef A. Noviyantoand and D.-H. Yoon, Rare-Earth Oxide Additives for the Sintering of Silicon Carbide, Diamond Relat. Mater., 2013, 38(1), p 124–130. CrossRef
54.
Zurück zum Zitat L. Tian, Y. Zhou and W.-L. Zhou, SiC-Nanoparticle-Reinforced Si3N4 Matrix Composites, J. Mater. Sci., 1998, 33, p 797–802. CrossRef L. Tian, Y. Zhou and W.-L. Zhou, SiC-Nanoparticle-Reinforced Si3N4 Matrix Composites, J. Mater. Sci., 1998, 33, p 797–802. CrossRef
55.
Zurück zum Zitat M. Jankula, P. Šín, R. Podoba and J. Ondruška, Typical Problems in Push-Rod Dilatometry Analysis, Epitoanyag-J. Silic. Based Compos. Mater., 2013, 65(1), p 11–14. CrossRef M. Jankula, P. Šín, R. Podoba and J. Ondruška, Typical Problems in Push-Rod Dilatometry Analysis, Epitoanyag-J. Silic. Based Compos. Mater., 2013, 65(1), p 11–14. CrossRef
56.
Zurück zum Zitat E. Kaisersberger and J. Kelly, Study of Special Ceramics with a Dilatometer in the Temperature Range 25–2000 °C, Int. J. Thermophys., 1989, 10(2), p 505–512. CrossRef E. Kaisersberger and J. Kelly, Study of Special Ceramics with a Dilatometer in the Temperature Range 25–2000 °C, Int. J. Thermophys., 1989, 10(2), p 505–512. CrossRef
57.
Zurück zum Zitat W.-D. Emmerich, J. Hayhurst and E. Kaisersberger, High Temperature Dilatometer Study of Special Ceramics and Their Sintering Kinetics, Thermochim. Acta, 1986, 106, p 71–78. CrossRef W.-D. Emmerich, J. Hayhurst and E. Kaisersberger, High Temperature Dilatometer Study of Special Ceramics and Their Sintering Kinetics, Thermochim. Acta, 1986, 106, p 71–78. CrossRef
58.
Zurück zum Zitat I.-W. Chen, Grain Boundary Kinetics in Oxide Ceramics with the Cubic Fluorite Crystal Structure and its Derivatives, Interface Sci., 2000, 8(2–3), p 147–156. CrossRef I.-W. Chen, Grain Boundary Kinetics in Oxide Ceramics with the Cubic Fluorite Crystal Structure and its Derivatives, Interface Sci., 2000, 8(2–3), p 147–156. CrossRef
59.
Zurück zum Zitat J. Li and Y. Ye, Densification and Grain Growth of Al2O3 Nanoceramics During Pressureless Sintering, J. Am. Ceram. Soc., 2006, 89(1), p 139–143. CrossRef J. Li and Y. Ye, Densification and Grain Growth of Al2O3 Nanoceramics During Pressureless Sintering, J. Am. Ceram. Soc., 2006, 89(1), p 139–143. CrossRef
60.
Zurück zum Zitat K. Das and G. Banerjee, Mechanical Properties and Microstructures of Reaction Sintered Mullite–Zirconia Composites in the Presence of an Additive-Dysprosia, J. Eur. Ceram. Soc., 2000, 20(2), p 153–157. CrossRef K. Das and G. Banerjee, Mechanical Properties and Microstructures of Reaction Sintered Mullite–Zirconia Composites in the Presence of an Additive-Dysprosia, J. Eur. Ceram. Soc., 2000, 20(2), p 153–157. CrossRef
61.
Zurück zum Zitat S.H. Badiee, S. Otroj and M.M. Rahmani, The Effect of Nano-TiO2 Addition on the Properties of Mullite-Zirconia Composites Prepared by Slip Casting, Sci. Sintering, 2012, 44(3), p 341–354. CrossRef S.H. Badiee, S. Otroj and M.M. Rahmani, The Effect of Nano-TiO2 Addition on the Properties of Mullite-Zirconia Composites Prepared by Slip Casting, Sci. Sintering, 2012, 44(3), p 341–354. CrossRef
62.
Zurück zum Zitat M. Dondi, G. Ercolani, G. Guarini, C. Melandri, M. Raimondo, E.R.E. Almendra and P.M.T. Cavalcante, The Role of Surface Microstructure on the Resistance to Stains of Porcelain Stoneware Tiles, J. Eur. Ceram. Soc., 2005, 25(4), p 357–365. CrossRef M. Dondi, G. Ercolani, G. Guarini, C. Melandri, M. Raimondo, E.R.E. Almendra and P.M.T. Cavalcante, The Role of Surface Microstructure on the Resistance to Stains of Porcelain Stoneware Tiles, J. Eur. Ceram. Soc., 2005, 25(4), p 357–365. CrossRef
63.
Zurück zum Zitat D.K. Koli, G. Agnihotri and R. Purohit, A Review on Properties, Behaviour and Processing Methods for Al- Nano Al2O3 Composites, Procedia Mater. Sci., 2014, 6, p 567–589. CrossRef D.K. Koli, G. Agnihotri and R. Purohit, A Review on Properties, Behaviour and Processing Methods for Al- Nano Al2O3 Composites, Procedia Mater. Sci., 2014, 6, p 567–589. CrossRef
Metadaten
Titel
Two-Step Sintering of TiO2-ZrO2-Y2O3 Nanocomposite Ceramics with Enhanced Mechanical Properties
verfasst von
Pan Luo
Jin Zhang
Feng Zhang
Kuo Ma
Junwei Xia
Wei Wang
Liping Nie
Publikationsdatum
03.03.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06732-5

Weitere Artikel der Ausgabe 8/2022

Journal of Materials Engineering and Performance 8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.