Skip to main content
Erschienen in: Electrical Engineering 1/2021

19.09.2020 | Original Paper

Two VHDL-AMS-based models of multi-conductor power cables for EMI simulations

verfasst von: Ali Krim, Adberrazak Lakrim, Driss Tahri

Erschienen in: Electrical Engineering | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the fast switching of the commutation cell in a motor drive system, high-frequency electromagnetic disturbances propagate through cables to reach the loads. Mismatched impedances lead to an overvoltage at the loads terminals. In order to study this EMI issue, accurate circuit models of power cables are required. In this context, this paper proposes two multi-conductor cable models. Our approach takes into consideration the frequency dependence of the cable per-unit-length parameters, the coupling between conductors and propagated induced phenomena. The power cables used in motor drive systems are characterized by their rotational symmetry. Thus, the complexity of the model is reduced by means of both a set of mathematical functions approximating the frequency behavior of the cable and using a modal domain-based transfer matrix. So, the VHDL-AMS frequency model can be easily deduced. Once the model is established, the simulation of any cable length becomes an easy task. The model is implemented in ANSYS Simplorer software. After that, the time domain model is built up based on the vector-fitting algorithm. In order to validate our proposal, a comparison of the common mode and the differential mode frequency responses of the reduced cable model with those of the well-known cascaded cell model and measurements found in the literature is performed. The results demonstrate the accuracy and the speed of our approach in the predefined frequency range. Also, a time-domain comparison between the frequency model and the time model is performed. The results obtained validate the two models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ramachandran R, Nymand M (2017) Experimental demonstration of a 98.8% efficient isolated DC-DC GaN converter. IEEE Trans Ind Electron 64(11):9104–9113CrossRef Ramachandran R, Nymand M (2017) Experimental demonstration of a 98.8% efficient isolated DC-DC GaN converter. IEEE Trans Ind Electron 64(11):9104–9113CrossRef
2.
Zurück zum Zitat Nguyen-Duc Q, Le Menach Y, Clenet S, Vizireanu DC (2012) Impedance determination in frequency domain for energy cables by FEM and TLM. In: Proceedings of the IX international symposium industrial electronics, INDEL Nguyen-Duc Q, Le Menach Y, Clenet S, Vizireanu DC (2012) Impedance determination in frequency domain for energy cables by FEM and TLM. In: Proceedings of the IX international symposium industrial electronics, INDEL
3.
Zurück zum Zitat Marlier C, Videt A, Idir N, Moussa H, Meuret R (2013) Hybrid time-frequency EMI noise sources modeling method. In: 2013 15th European conference on power electronics and applications (EPE), Lille, pp 1–9 Marlier C, Videt A, Idir N, Moussa H, Meuret R (2013) Hybrid time-frequency EMI noise sources modeling method. In: 2013 15th European conference on power electronics and applications (EPE), Lille, pp 1–9
4.
Zurück zum Zitat Marlier C, Videt A, Idir N, Moussa H, Meuret R (2012) Modeling of switching transients for frequency-domain EMC analysis of power converters. In: 2012 15th international power electronics and motion control conference (EPE/PEMC), Novi Sad, pp 1–8 Marlier C, Videt A, Idir N, Moussa H, Meuret R (2012) Modeling of switching transients for frequency-domain EMC analysis of power converters. In: 2012 15th international power electronics and motion control conference (EPE/PEMC), Novi Sad, pp 1–8
5.
Zurück zum Zitat Krim A, Tahri D, Lakrim A (2018) VHDL-AMS based frequency domain model of four-wire shielded energy cable. In: 2018 19th IEEE mediterranean electrotechnical conference (MELECON), Marrakech, pp 144–148 Krim A, Tahri D, Lakrim A (2018) VHDL-AMS based frequency domain model of four-wire shielded energy cable. In: 2018 19th IEEE mediterranean electrotechnical conference (MELECON), Marrakech, pp 144–148
6.
Zurück zum Zitat Marlier C, Videt A, Idir N (2015) NIF-based frequency-domain modeling method of three-wire shielded energy cables for EMC simulation. IEEE Trans Electromagn Compat 57(1):145–155CrossRef Marlier C, Videt A, Idir N (2015) NIF-based frequency-domain modeling method of three-wire shielded energy cables for EMC simulation. IEEE Trans Electromagn Compat 57(1):145–155CrossRef
7.
Zurück zum Zitat Bade TG, Roudet J, Guichon JM et al (2019) Frequency-domain modeling of unshielded multiconductor power cables for periodic excitation with new experimental protocol for wide band parameter identification. Electr Eng 101:1–11CrossRef Bade TG, Roudet J, Guichon JM et al (2019) Frequency-domain modeling of unshielded multiconductor power cables for periodic excitation with new experimental protocol for wide band parameter identification. Electr Eng 101:1–11CrossRef
8.
Zurück zum Zitat Huangfu Y, Di Rienzo L, Wang S (2018) Frequency-dependent multi-conductor transmission line model for shielded power cables considering geometrical dissymmetry. IEEE Trans Magn 54(3):1–4CrossRef Huangfu Y, Di Rienzo L, Wang S (2018) Frequency-dependent multi-conductor transmission line model for shielded power cables considering geometrical dissymmetry. IEEE Trans Magn 54(3):1–4CrossRef
9.
Zurück zum Zitat Stevanović I, Wunsch B, Madonna GL, Skibin S (2014) High-frequency behavioral multiconductor cable modeling for EMI simulations in power electronics. IEEE Trans Ind Inf 10(2):1392–1400CrossRef Stevanović I, Wunsch B, Madonna GL, Skibin S (2014) High-frequency behavioral multiconductor cable modeling for EMI simulations in power electronics. IEEE Trans Ind Inf 10(2):1392–1400CrossRef
10.
Zurück zum Zitat Wunsch B, Stevanović I, Skibin S (2017) Length-scalable multiconductor cable modeling for EMI simulations in power electronics. IEEE Trans Power Electron 32(3):1908–1916CrossRef Wunsch B, Stevanović I, Skibin S (2017) Length-scalable multiconductor cable modeling for EMI simulations in power electronics. IEEE Trans Power Electron 32(3):1908–1916CrossRef
11.
Zurück zum Zitat Weens Y, Idir N, Bausiere R, Franchaud JJ (2006) Modeling and simulation of unshielded and shielded energy cables in frequency and time domains. IEEE Trans Magn 42(7):1876–1882CrossRef Weens Y, Idir N, Bausiere R, Franchaud JJ (2006) Modeling and simulation of unshielded and shielded energy cables in frequency and time domains. IEEE Trans Magn 42(7):1876–1882CrossRef
12.
Zurück zum Zitat Antonini G, Orlandi A, Pignari SA (2013) Review of Clayton R. Paul studies on multiconductor transmission lines. IEEE Trans Electromagn Compat 55(4):639–647CrossRef Antonini G, Orlandi A, Pignari SA (2013) Review of Clayton R. Paul studies on multiconductor transmission lines. IEEE Trans Electromagn Compat 55(4):639–647CrossRef
13.
Zurück zum Zitat Wunsch B, Stevanović I, Skibin S (2013) Per-unit-length parameter extraction for lossy multi-conductor power cables. In: IEEE conference on electrical performance of electronic packaging and systems, (EPEPS), San Jose, CA, October 27–30, pp 191–194 Wunsch B, Stevanović I, Skibin S (2013) Per-unit-length parameter extraction for lossy multi-conductor power cables. In: IEEE conference on electrical performance of electronic packaging and systems, (EPEPS), San Jose, CA, October 27–30, pp 191–194
14.
Zurück zum Zitat Pagnetti A, Xemard A, Paladian F, Nucci CA (2012) An improved method for the calculation of the internal impedances of solid and hollow conductors with the inclusion of proximity effect. IEEE Trans Power Deliv 27(4):2063–2072CrossRef Pagnetti A, Xemard A, Paladian F, Nucci CA (2012) An improved method for the calculation of the internal impedances of solid and hollow conductors with the inclusion of proximity effect. IEEE Trans Power Deliv 27(4):2063–2072CrossRef
15.
Zurück zum Zitat Patel UR, Gustavsen B, Triverio P (2013) An equivalent surface current approach for the computation of the series impedance of power cables with inclusion of skin and proximity effects. IEEE Trans Power Deliv 28(4):2474–2482CrossRef Patel UR, Gustavsen B, Triverio P (2013) An equivalent surface current approach for the computation of the series impedance of power cables with inclusion of skin and proximity effects. IEEE Trans Power Deliv 28(4):2474–2482CrossRef
16.
Zurück zum Zitat Patel UR, Triverio P (2016) Skin Effect Modeling in Conductors of Arbitrary Shape Through a Surface Admittance Operator and the Contour Integral Method. IEEE Trans Microw Theory Tech 64(9):2708–2717CrossRef Patel UR, Triverio P (2016) Skin Effect Modeling in Conductors of Arbitrary Shape Through a Surface Admittance Operator and the Contour Integral Method. IEEE Trans Microw Theory Tech 64(9):2708–2717CrossRef
17.
Zurück zum Zitat Santos VD, Roux N, Revol B, Sareni B, B. Cougo B, Carayon J (2017) Unshielded cable modeling for conducted emissions issues in electrical power drive systems. In: 2017 international symposium on electromagnetic compatibility—EMC EUROPE, Angers, pp 1–6 Santos VD, Roux N, Revol B, Sareni B, B. Cougo B, Carayon J (2017) Unshielded cable modeling for conducted emissions issues in electrical power drive systems. In: 2017 international symposium on electromagnetic compatibility—EMC EUROPE, Angers, pp 1–6
18.
Zurück zum Zitat Paul C (2008) Analysis of multi-conductor transmission line. Wiley, New York Paul C (2008) Analysis of multi-conductor transmission line. Wiley, New York
19.
Zurück zum Zitat Park Rae-Hong (2002) Comments on “optimal approximation of uniformly rotated images: relationship between Karhumen–Loeve expansion and discrete cosine transform”. IEEE Trans Image Process 11(3):332–334MathSciNetCrossRef Park Rae-Hong (2002) Comments on “optimal approximation of uniformly rotated images: relationship between Karhumen–Loeve expansion and discrete cosine transform”. IEEE Trans Image Process 11(3):332–334MathSciNetCrossRef
21.
Zurück zum Zitat Gustavsen B, Semlyen A (1999) Rational approximation of frequency domain responses by vector fitting. IEEE Trans Power Deliv 14(3):1052–1061CrossRef Gustavsen B, Semlyen A (1999) Rational approximation of frequency domain responses by vector fitting. IEEE Trans Power Deliv 14(3):1052–1061CrossRef
22.
Zurück zum Zitat Gustavsen B (2006) Improving the pole relocating properties of vector fitting. IEEE Trans Power Deliv 21(3):1587–1592CrossRef Gustavsen B (2006) Improving the pole relocating properties of vector fitting. IEEE Trans Power Deliv 21(3):1587–1592CrossRef
23.
Zurück zum Zitat Semlyen A, Gustavsen B (2009) A half-size singularity test matrix for fast and reliable passivity assessment of rational models. IEEE Trans Power Deliv 24(1):345–351CrossRef Semlyen A, Gustavsen B (2009) A half-size singularity test matrix for fast and reliable passivity assessment of rational models. IEEE Trans Power Deliv 24(1):345–351CrossRef
24.
Zurück zum Zitat Gustavsen B (2008) Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues. IEEE Trans Power Deliv 23(4):2278–2285MathSciNetCrossRef Gustavsen B (2008) Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues. IEEE Trans Power Deliv 23(4):2278–2285MathSciNetCrossRef
25.
Zurück zum Zitat Moreau M (2009) Modélisation haute fréquence des convertisseurs d’énergie. Application à l’étude des émissions conduites vers le réseau, thesis, Université de Lille, France Moreau M (2009) Modélisation haute fréquence des convertisseurs d’énergie. Application à l’étude des émissions conduites vers le réseau, thesis, Université de Lille, France
26.
Zurück zum Zitat Weens Y, Idir N, Franchaud JJ (2007) Power cables models with frequency dependent parameters. Int Rev Electr Eng 2(6):763–770 Weens Y, Idir N, Franchaud JJ (2007) Power cables models with frequency dependent parameters. Int Rev Electr Eng 2(6):763–770
27.
Zurück zum Zitat Ametani A (1980) A general formulation of impedance and admittance of cables. IEEE Trans Power Appl Syst 3:902–910CrossRef Ametani A (1980) A general formulation of impedance and admittance of cables. IEEE Trans Power Appl Syst 3:902–910CrossRef
28.
Zurück zum Zitat Hafner AA, Caballero PT, Monteiro JHA et al (2017) Modeling of power cables with arbitrary cross section: from parameter calculation to electromagnetic transients simulation. J Control Autom Electr Syst 28:405–417CrossRef Hafner AA, Caballero PT, Monteiro JHA et al (2017) Modeling of power cables with arbitrary cross section: from parameter calculation to electromagnetic transients simulation. J Control Autom Electr Syst 28:405–417CrossRef
29.
Zurück zum Zitat Ruehli A (1974) Equivalent circuit models for three dimensional multiconductor systems. IEEE Trans Microw Theory Tech 22(3):216–221CrossRef Ruehli A (1974) Equivalent circuit models for three dimensional multiconductor systems. IEEE Trans Microw Theory Tech 22(3):216–221CrossRef
30.
Zurück zum Zitat Ruehli A, Heeb H (1992) Circuit models for three-dimensional geometries including dielectrics. IEEE Trans Microw Theory Tech 40(7):1507–1516CrossRef Ruehli A, Heeb H (1992) Circuit models for three-dimensional geometries including dielectrics. IEEE Trans Microw Theory Tech 40(7):1507–1516CrossRef
31.
Zurück zum Zitat Yahyaoui W, Pichon L, Duval F (2010) A 3D PEEC method for the prediction of radiated fields from automotive cables. IEEE Trans Magn 46(8):3053–3056CrossRef Yahyaoui W, Pichon L, Duval F (2010) A 3D PEEC method for the prediction of radiated fields from automotive cables. IEEE Trans Magn 46(8):3053–3056CrossRef
32.
Zurück zum Zitat Patel UR, Triverio P (2015) MoM-SO: a complete method for computing the impedance of cable systems including skin proximity, and ground return effects. IEEE Trans Power Deliv 30(5):2110–2118CrossRef Patel UR, Triverio P (2015) MoM-SO: a complete method for computing the impedance of cable systems including skin proximity, and ground return effects. IEEE Trans Power Deliv 30(5):2110–2118CrossRef
33.
Zurück zum Zitat Patel UR, Triverio P (2016) Accurate impedance calculation for underground and submarine power cables using MoM-SO and a multilayer ground model. IEEE Trans Power Deliv 31(3):1233–1241CrossRef Patel UR, Triverio P (2016) Accurate impedance calculation for underground and submarine power cables using MoM-SO and a multilayer ground model. IEEE Trans Power Deliv 31(3):1233–1241CrossRef
34.
Zurück zum Zitat Xue H, Ametani A, Mahserediian J, Kocar I (2018) Computation of overhead line/underground cable parameters with improved MoM-SO method. In: 2018 power systems computation conference (PSCC), Dublin, pp 1–7 Xue H, Ametani A, Mahserediian J, Kocar I (2018) Computation of overhead line/underground cable parameters with improved MoM-SO method. In: 2018 power systems computation conference (PSCC), Dublin, pp 1–7
35.
Zurück zum Zitat Habib S, Kordi B (2013) Calculation of multiconductor underground cables high-frequency per-unit-length parameters using electromagnetic modal analysis. IEEE Trans Power Deliv 28:276–284CrossRef Habib S, Kordi B (2013) Calculation of multiconductor underground cables high-frequency per-unit-length parameters using electromagnetic modal analysis. IEEE Trans Power Deliv 28:276–284CrossRef
36.
Zurück zum Zitat Gustavsen B, Bruaset A, Bremnes J, Hassel A (2009) A finite element approach for calculating electrical parameters of umbilical cables. IEEE Trans Power Deliv 24(4):2375–2384CrossRef Gustavsen B, Bruaset A, Bremnes J, Hassel A (2009) A finite element approach for calculating electrical parameters of umbilical cables. IEEE Trans Power Deliv 24(4):2375–2384CrossRef
37.
Zurück zum Zitat Garcia-Sanchez JL et al (2016) Aerial line model for power system electromagnetic transients simulation. IET Gener Transmiss Distrib 10(7):1597–1604CrossRef Garcia-Sanchez JL et al (2016) Aerial line model for power system electromagnetic transients simulation. IET Gener Transmiss Distrib 10(7):1597–1604CrossRef
38.
Zurück zum Zitat Nahman N, Holt D (1972) Transient analysis of coaxial cables using the skin effect approximation \( A+B\sqrt{s}\). IEEE Trans Circuit Theory 19(5):443–451CrossRef Nahman N, Holt D (1972) Transient analysis of coaxial cables using the skin effect approximation \( A+B\sqrt{s}\). IEEE Trans Circuit Theory 19(5):443–451CrossRef
39.
Zurück zum Zitat Achar R, Nakhla M (2001) Simulation of high-speed interconnects. Proc IEEE 89(5):693–728CrossRef Achar R, Nakhla M (2001) Simulation of high-speed interconnects. Proc IEEE 89(5):693–728CrossRef
40.
Zurück zum Zitat Moreno P, Gómez P, Naredo JL, Guardado L (2005) Frequency domain transient analysis of electrical networks including non-linear conditions. Int J Electr Power Energy Syst 27(2):139–146CrossRef Moreno P, Gómez P, Naredo JL, Guardado L (2005) Frequency domain transient analysis of electrical networks including non-linear conditions. Int J Electr Power Energy Syst 27(2):139–146CrossRef
41.
Zurück zum Zitat Gómez P, Uribe FA (2009) The numerical Laplace transform: an accurate technique for analyzing electromagnetic transients on power system devices. Int J Electr Power Energy Syst 31(2):116–123CrossRef Gómez P, Uribe FA (2009) The numerical Laplace transform: an accurate technique for analyzing electromagnetic transients on power system devices. Int J Electr Power Energy Syst 31(2):116–123CrossRef
42.
Zurück zum Zitat Bade TG (2019) Characterization of the cabling on industrial power networks for EMI simulation, thesis. Grenoble Alpes Bade TG (2019) Characterization of the cabling on industrial power networks for EMI simulation, thesis. Grenoble Alpes
43.
Zurück zum Zitat Marlier C (2013) Modélisation des perturbations électromagnétiques dans les convertisseurs statiques pour des applications aéronautiques, thesis, Lille 1 Marlier C (2013) Modélisation des perturbations électromagnétiques dans les convertisseurs statiques pour des applications aéronautiques, thesis, Lille 1
44.
Zurück zum Zitat Ametani A, Ohno T, Nagaoka N (2015) Cable system transients: theory, modeling and simulation. Wiley, New YorkCrossRef Ametani A, Ohno T, Nagaoka N (2015) Cable system transients: theory, modeling and simulation. Wiley, New YorkCrossRef
Metadaten
Titel
Two VHDL-AMS-based models of multi-conductor power cables for EMI simulations
verfasst von
Ali Krim
Adberrazak Lakrim
Driss Tahri
Publikationsdatum
19.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2021
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01108-1

Weitere Artikel der Ausgabe 1/2021

Electrical Engineering 1/2021 Zur Ausgabe

Neuer Inhalt