Skip to main content
Erschienen in: Wireless Networks 2/2023

14.11.2022 | Original Paper

UAV flight path design using multi-objective grasshopper with harmony search for cluster head selection in wireless sensor networks

verfasst von: Peizhen Xing, Hui Zhang, Mohamed E. Ghoneim, Meshal Shutaywi

Erschienen in: Wireless Networks | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Though space travel is technologically developed, bad weather makes path planning inefficient. When an unmanned aerial vehicle looks for an optimal path, it is hard to carry out a mission from unidentified obstacles. In the existing method, the path planner does not work with multiple UAVs. Also path optimization is considered as a big challenge for multiple UAV movement. The proposed work, uses Multiple Swarm Fruit fly optimization with the Q-Learning method for path planning in multiple UAVs. The proposed MSFOA divides the total fruit fly swarms into sub-swarms with multi-job also improves the searching area. In addition, the Q Learning-based path selection strategy is used to optimize global and local searches during the evolutionary process. Whereas the offspring competitive method is used to enhance the level of use of each computation result and to facilitate the transmission of information across different fruit fly sub-swarms. The proposed method MSFO-QL for path planning reduces costs and finds the path more efficiently. Computational results show that the suggested MSFO-QL can handle the limited UAV path planning with minimum worst selection with 280 on case 1 and 232 on case 2. Proposed is more efficient and robust than the existing optimization techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shi, K. M., Zhang, X. Y., & Xia, S. (2020). Multiple swarm fruit fly optimization algorithm based path planning method for multi-UAVs. Applied Science, 10, 2822.CrossRef Shi, K. M., Zhang, X. Y., & Xia, S. (2020). Multiple swarm fruit fly optimization algorithm based path planning method for multi-UAVs. Applied Science, 10, 2822.CrossRef
2.
Zurück zum Zitat Majeed, A., & Hwang, S. O. (2021). A multi-objective coverage path planning algorithm for UAVs to cover spatially distributed regions in urban environments. Aerospace, 8(11), 343.CrossRef Majeed, A., & Hwang, S. O. (2021). A multi-objective coverage path planning algorithm for UAVs to cover spatially distributed regions in urban environments. Aerospace, 8(11), 343.CrossRef
3.
Zurück zum Zitat Yu, X. B., Li, C. L., & Zhou, J. F. (2020). A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowledge-Based Systems, 204, 106209.CrossRef Yu, X. B., Li, C. L., & Zhou, J. F. (2020). A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowledge-Based Systems, 204, 106209.CrossRef
4.
Zurück zum Zitat Maw, A. A., Tyan, M., Nguyen, T. A., & Lee, J. W. (2021). iADA*-RL: Anytime graph-based path planning with deep reinforcement learningfor an autonomous UAV. Applied Sciences, 11, 3948.CrossRef Maw, A. A., Tyan, M., Nguyen, T. A., & Lee, J. W. (2021). iADA*-RL: Anytime graph-based path planning with deep reinforcement learningfor an autonomous UAV. Applied Sciences, 11, 3948.CrossRef
5.
Zurück zum Zitat Yuan, J., Liu, Z., Lian, Y., Chen, L., An, Q., Wang, L., & Ma, B. (2022). Global optimization of UAV area coverage path planning based on good point set and genetic algorithm. Aerospace, 9(2), 86.CrossRef Yuan, J., Liu, Z., Lian, Y., Chen, L., An, Q., Wang, L., & Ma, B. (2022). Global optimization of UAV area coverage path planning based on good point set and genetic algorithm. Aerospace, 9(2), 86.CrossRef
6.
Zurück zum Zitat Lee, M. T., Chuang, M. L., Kuo, S. T., & Chen, Y. R. (2022). UAV swarm real-time rerouting by edge computing D* lite algorithm. Applied Sciences, 12(3), 1056.CrossRef Lee, M. T., Chuang, M. L., Kuo, S. T., & Chen, Y. R. (2022). UAV swarm real-time rerouting by edge computing D* lite algorithm. Applied Sciences, 12(3), 1056.CrossRef
7.
Zurück zum Zitat Xia, S., & Zhang, X. (2021). Constrained path planning for unmanned aerial vehicle in 3D terrain using modified multi-objective particle swarm optimization. Actuators, 10(10), 255.CrossRef Xia, S., & Zhang, X. (2021). Constrained path planning for unmanned aerial vehicle in 3D terrain using modified multi-objective particle swarm optimization. Actuators, 10(10), 255.CrossRef
8.
Zurück zum Zitat Qin, Z., Zhang, X., Zhang, X., Lu, B., Liu, Z., & Guo, L. (2022). The UAV trajectory optimization for data collection from time-constrained IoT devices: A hierarchical deep q-network approach. Applied Sciences, 12(5), 2546.CrossRef Qin, Z., Zhang, X., Zhang, X., Lu, B., Liu, Z., & Guo, L. (2022). The UAV trajectory optimization for data collection from time-constrained IoT devices: A hierarchical deep q-network approach. Applied Sciences, 12(5), 2546.CrossRef
9.
Zurück zum Zitat Shen, Y., Zhu, Y., Kang, H., Sun, X., Chen, Q., & Wang, D. (2021). UAV path planning based on multi-stage constraint optimization. Drones, 5(4), 144.CrossRef Shen, Y., Zhu, Y., Kang, H., Sun, X., Chen, Q., & Wang, D. (2021). UAV path planning based on multi-stage constraint optimization. Drones, 5(4), 144.CrossRef
10.
Zurück zum Zitat Machmudah, A., Shanmugavel, M., Parman, S., Manan, T. S. A., Dutykh, D., Beddu, S., & Rajabi, A. (2022). Flight trajectories optimization of fixed-wing UAV by bank-turn mechanism. Drones, 6(3), 69.CrossRef Machmudah, A., Shanmugavel, M., Parman, S., Manan, T. S. A., Dutykh, D., Beddu, S., & Rajabi, A. (2022). Flight trajectories optimization of fixed-wing UAV by bank-turn mechanism. Drones, 6(3), 69.CrossRef
11.
Zurück zum Zitat Sun, Y., & Ma, O. (2022). Automating aircraft scanning for inspection or 3D model creation with a UAV and optimal path planning. Drones, 6(4), 87.CrossRef Sun, Y., & Ma, O. (2022). Automating aircraft scanning for inspection or 3D model creation with a UAV and optimal path planning. Drones, 6(4), 87.CrossRef
12.
Zurück zum Zitat Jayaweera, H. M., & Hanoun, S. (2022). Path planning of unmanned aerial vehicles (UAVs) in windy environments. Drones, 6(5), 101.CrossRef Jayaweera, H. M., & Hanoun, S. (2022). Path planning of unmanned aerial vehicles (UAVs) in windy environments. Drones, 6(5), 101.CrossRef
13.
Zurück zum Zitat Gul, F., Mir, I., Abualigah, L., Sumari, P., & Forestiero, A. (2021). A consolidated review of path planning and optimization techniques: Technical perspectives and future directions. Electronics, 10(18), 2250.CrossRef Gul, F., Mir, I., Abualigah, L., Sumari, P., & Forestiero, A. (2021). A consolidated review of path planning and optimization techniques: Technical perspectives and future directions. Electronics, 10(18), 2250.CrossRef
14.
Zurück zum Zitat Belge, E., Altan, A., & Hacıoğlu, R. (2022). Metaheuristic optimization-based path planning and tracking of quadcopter for payload hold-release mission. Electronics, 11(8), 1208.CrossRef Belge, E., Altan, A., & Hacıoğlu, R. (2022). Metaheuristic optimization-based path planning and tracking of quadcopter for payload hold-release mission. Electronics, 11(8), 1208.CrossRef
15.
Zurück zum Zitat Ali, Z. A., Zhangang, H., & Hang, W. B. (2021). Cooperative path planning of multiple UAVs by using max–min ant colony optimization along with cauchy mutant operator. Fluctation Noise Letter, 20, 2150002.CrossRef Ali, Z. A., Zhangang, H., & Hang, W. B. (2021). Cooperative path planning of multiple UAVs by using max–min ant colony optimization along with cauchy mutant operator. Fluctation Noise Letter, 20, 2150002.CrossRef
16.
Zurück zum Zitat Shao, S., Peng, Y., He, C., & Du, Y. (2020). Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Transactions, 97, 415–430.CrossRef Shao, S., Peng, Y., He, C., & Du, Y. (2020). Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Transactions, 97, 415–430.CrossRef
17.
Zurück zum Zitat Dewangan, R. K., Shukla, A., & Godfrey, W. W. (2019). Three dimensional path planning using grey wolf optimizer for UAVs. Applied Intelligence, 49, 2201–2217.CrossRef Dewangan, R. K., Shukla, A., & Godfrey, W. W. (2019). Three dimensional path planning using grey wolf optimizer for UAVs. Applied Intelligence, 49, 2201–2217.CrossRef
18.
Zurück zum Zitat Ganguly, S. (2020). Multi-objective distributed generation penetration planning with load model using particle swarm optimization. Decision Making: Applications in Management and Engineering, 3, 30–42. Ganguly, S. (2020). Multi-objective distributed generation penetration planning with load model using particle swarm optimization. Decision Making: Applications in Management and Engineering, 3, 30–42.
19.
Zurück zum Zitat Kamil, R. T., Mohamed, M. J., & Oleiwi, B. K. (2020). Path planning of mobile robot using improved artificial bee colony algorithm. Engineering and Technology Journal, 38, 1384–1395.CrossRef Kamil, R. T., Mohamed, M. J., & Oleiwi, B. K. (2020). Path planning of mobile robot using improved artificial bee colony algorithm. Engineering and Technology Journal, 38, 1384–1395.CrossRef
20.
Zurück zum Zitat Silva Arantes, J. D., Silva Arantes, M. D., Motta Toledo, C. F., Júnior, O. T., & Williams, B. C. (2017). Heuristic and genetic algorithm approachesfor UAV path planning under critical situation. International Journal on Artificial Intelligence Tools, 26, 1760008.CrossRef Silva Arantes, J. D., Silva Arantes, M. D., Motta Toledo, C. F., Júnior, O. T., & Williams, B. C. (2017). Heuristic and genetic algorithm approachesfor UAV path planning under critical situation. International Journal on Artificial Intelligence Tools, 26, 1760008.CrossRef
21.
Zurück zum Zitat Hussien, A. G., Amin, M., & AbdElAziz, M. (2020). A comprehensive review of moth-flame optimization: Variants, hybrids, and applications. Journal of Experimental & Theoretical Artificial Intelligence, 32, 705–725.CrossRef Hussien, A. G., Amin, M., & AbdElAziz, M. (2020). A comprehensive review of moth-flame optimization: Variants, hybrids, and applications. Journal of Experimental & Theoretical Artificial Intelligence, 32, 705–725.CrossRef
22.
Zurück zum Zitat Qu, C., Gai, W., Zhang, J., & Zhong, M. (2020). A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowledge-Based Systems, 194, 105530.CrossRef Qu, C., Gai, W., Zhang, J., & Zhong, M. (2020). A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowledge-Based Systems, 194, 105530.CrossRef
23.
Zurück zum Zitat Soundarya, M., Anusha, D. K., Rohith, P., Panneerselvam, K., & Srinivasan, S. (2019). Optimal path planning of UAV using grey wolf optimizer. International Journal of Computational Systems Engineering, 5, 129–136.CrossRef Soundarya, M., Anusha, D. K., Rohith, P., Panneerselvam, K., & Srinivasan, S. (2019). Optimal path planning of UAV using grey wolf optimizer. International Journal of Computational Systems Engineering, 5, 129–136.CrossRef
24.
Zurück zum Zitat Singh, N. H., & Thongam, K. (2019). Neural network-based approaches for mobile robot navigation in static and moving obstaclesenvironments. Intelligence Service Robotics, 12, 55–67.CrossRef Singh, N. H., & Thongam, K. (2019). Neural network-based approaches for mobile robot navigation in static and moving obstaclesenvironments. Intelligence Service Robotics, 12, 55–67.CrossRef
25.
Zurück zum Zitat Zhang, X. Y., & Duan, H. B. (2015). An improved constrained differential evolution algorithm for unmanned aerial vehicle global routeplanning. Applied Soft Computing, 26, 270–284.CrossRef Zhang, X. Y., & Duan, H. B. (2015). An improved constrained differential evolution algorithm for unmanned aerial vehicle global routeplanning. Applied Soft Computing, 26, 270–284.CrossRef
26.
Zurück zum Zitat Coelho, L., Ayala, H. V. H., & Alotto, P. (2010). A multiobjective Gaussian particle swarm approach applied to electromagnetic optimization. IEEE Transactions on Magnetics, 46, 3289–3292.CrossRef Coelho, L., Ayala, H. V. H., & Alotto, P. (2010). A multiobjective Gaussian particle swarm approach applied to electromagnetic optimization. IEEE Transactions on Magnetics, 46, 3289–3292.CrossRef
27.
Zurück zum Zitat Yuan, X. F., Dai, X. S., Zhao, J. Y., & He, Q. (2014). On a novel multi-swarm fruit fly optimization algorithm and its application. Applied Mathematics and Computation, 233, 260–271.MATHCrossRef Yuan, X. F., Dai, X. S., Zhao, J. Y., & He, Q. (2014). On a novel multi-swarm fruit fly optimization algorithm and its application. Applied Mathematics and Computation, 233, 260–271.MATHCrossRef
28.
Zurück zum Zitat Niu, Z., Zhang, B., Dai, B., Zhang, J., Shen, F., Hu, Y., Fan, Y., & Zhang, Y. (2020). 220 GHz multi circuit integrated front end based on solid-state circuits for high speed communication system. Chinese Journal of Electronics, 31(3), 569–580.CrossRef Niu, Z., Zhang, B., Dai, B., Zhang, J., Shen, F., Hu, Y., Fan, Y., & Zhang, Y. (2020). 220 GHz multi circuit integrated front end based on solid-state circuits for high speed communication system. Chinese Journal of Electronics, 31(3), 569–580.CrossRef
29.
Zurück zum Zitat Xi, Y., Jiang, W., Wei, K., Hong, T., Cheng, T., & Gong, S. (2022). Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method. IEEE Antennas and Wireless Propagation Letters, 21(4), 656–660.CrossRef Xi, Y., Jiang, W., Wei, K., Hong, T., Cheng, T., & Gong, S. (2022). Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method. IEEE Antennas and Wireless Propagation Letters, 21(4), 656–660.CrossRef
30.
Zurück zum Zitat Hong, T., Guo, S., Jiang, W., & Gong, S. (2022). Highly selective frequency selective surface with ultrawideband rejection. IEEE Transactions on Antennas and Propagation, 70(5), 3459–3468.CrossRef Hong, T., Guo, S., Jiang, W., & Gong, S. (2022). Highly selective frequency selective surface with ultrawideband rejection. IEEE Transactions on Antennas and Propagation, 70(5), 3459–3468.CrossRef
31.
Zurück zum Zitat Xu, K., Weng, X., Li, J., Guo, Y., Wu, R., Cui, J., & Chen, Q. (2022). 60-GHz third-order on-chip bandpass filter using GaAs pHEMT technology. Semiconductor Science and Technology, 37(5), 055004.CrossRef Xu, K., Weng, X., Li, J., Guo, Y., Wu, R., Cui, J., & Chen, Q. (2022). 60-GHz third-order on-chip bandpass filter using GaAs pHEMT technology. Semiconductor Science and Technology, 37(5), 055004.CrossRef
32.
Zurück zum Zitat Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Shao, Q., Mangin, S., Fullerton, E., Jiang, L., & Zhao, W. (2020). Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter, 2(6), 1582–1593.CrossRef Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Shao, Q., Mangin, S., Fullerton, E., Jiang, L., & Zhao, W. (2020). Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter, 2(6), 1582–1593.CrossRef
33.
Zurück zum Zitat Wei, G., Fan, X., Xiong, Y., Lv, C., Li, S., & Lin, X. (2022). Highly disordered VO2 films: appearance of electronic glass transition and potential for device-level overheat protection. Applied Physics Express, 15(4), 043002.CrossRef Wei, G., Fan, X., Xiong, Y., Lv, C., Li, S., & Lin, X. (2022). Highly disordered VO2 films: appearance of electronic glass transition and potential for device-level overheat protection. Applied Physics Express, 15(4), 043002.CrossRef
34.
Zurück zum Zitat Li, A., Masouros, C., Swindlehurst, A. L., & Yu, W. (2021). 1-Bit massive MIMO transmission: Embracing interference with symbol-level precoding. IEEE Communications Magazine, 59(5), 121–127.CrossRef Li, A., Masouros, C., Swindlehurst, A. L., & Yu, W. (2021). 1-Bit massive MIMO transmission: Embracing interference with symbol-level precoding. IEEE Communications Magazine, 59(5), 121–127.CrossRef
35.
Zurück zum Zitat Sun, G., Cong, Y., Dong, J., Liu, Y., Ding, Z., Yu, H. (2021). What and How: Generalized Lifelong Spectral Clustering via Dual Memory, IEEE Transactions on Pattern Analysis and Machine Intelligence, P. 1. Sun, G., Cong, Y., Dong, J., Liu, Y., Ding, Z., Yu, H. (2021). What and How: Generalized Lifelong Spectral Clustering via Dual Memory, IEEE Transactions on Pattern Analysis and Machine Intelligence, P. 1.
36.
Zurück zum Zitat Sun, G., Cong, Y., Wang, Q., Zhong, B., & Fu, Y. (2020). Representative Task Self-Selection for Flexible Clustered Lifelong Learning, IEEE Transaction on Neural Networks and Learning Systems, PP. 1-15. Sun, G., Cong, Y., Wang, Q., Zhong, B., & Fu, Y. (2020). Representative Task Self-Selection for Flexible Clustered Lifelong Learning, IEEE Transaction on Neural Networks and Learning Systems, PP. 1-15.
37.
Zurück zum Zitat Liu, F., Zhang, G., & Lu, J. (2020). Multi-source heterogeneous unsupervised domain adaptation via fuzzy-relation neural networks, IEEE Transactions on Fuzzy Systems, vol. 1. Liu, F., Zhang, G., & Lu, J. (2020). Multi-source heterogeneous unsupervised domain adaptation via fuzzy-relation neural networks, IEEE Transactions on Fuzzy Systems, vol. 1.
38.
Zurück zum Zitat Zhang, L., Zheng, H., Cai, G., Zhang, Z., Wang, X., Koh, L. H. (2022). Power-frequency oscillation suppression algorithm for AC microgrid with multiple virtual synchronous generators based on fuzzy inference system, IET Renewable Power Generation. Zhang, L., Zheng, H., Cai, G., Zhang, Z., Wang, X., Koh, L. H. (2022). Power-frequency oscillation suppression algorithm for AC microgrid with multiple virtual synchronous generators based on fuzzy inference system, IET Renewable Power Generation.
39.
Zurück zum Zitat Zhang, L., Gao, T., Cai, G., & Hai, K. L. (2022). Research on electric vehicle charging safety warning model based on back propagation neural network optimized by improved gray wolf algorithm, Journal of Energy Storage, vol. 49. Zhang, L., Gao, T., Cai, G., & Hai, K. L. (2022). Research on electric vehicle charging safety warning model based on back propagation neural network optimized by improved gray wolf algorithm, Journal of Energy Storage, vol. 49.
40.
Zurück zum Zitat Li, D., Ge, S. S., & Lee, T. H. (2021). Simultaneous-arrival-to-origin convergence: Sliding-mode control through the norm-normalized sign function, IEEE Transactions on Automatic Control, vol. 1. Li, D., Ge, S. S., & Lee, T. H. (2021). Simultaneous-arrival-to-origin convergence: Sliding-mode control through the norm-normalized sign function, IEEE Transactions on Automatic Control, vol. 1.
41.
Zurück zum Zitat Li, D., Ge, S. S., & Lee, T. H. (2021). Fixed-time-synchronized consensus control of multiagent systems. IEEE Transactions on Control of Network Systems, 8(1), 89–98.MATHCrossRef Li, D., Ge, S. S., & Lee, T. H. (2021). Fixed-time-synchronized consensus control of multiagent systems. IEEE Transactions on Control of Network Systems, 8(1), 89–98.MATHCrossRef
42.
Zurück zum Zitat Zhang, L., Zhang, H., & Cai, G. (2022). The Multi-class Fault Diagnosis of Wind Turbine Bearing Based on Multi-source Signal Fusion and Deep Learning Generative Model. IEEE Transactions on Instrumentation and Measurement, vol. 1. Zhang, L., Zhang, H., & Cai, G. (2022). The Multi-class Fault Diagnosis of Wind Turbine Bearing Based on Multi-source Signal Fusion and Deep Learning Generative Model. IEEE Transactions on Instrumentation and Measurement, vol. 1.
43.
Zurück zum Zitat Mou, J., Duan, P., Gao, L., Liu, X., & Li, J. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Future Generation Computer Systems, 128, 521–537.CrossRef Mou, J., Duan, P., Gao, L., Liu, X., & Li, J. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Future Generation Computer Systems, 128, 521–537.CrossRef
44.
Zurück zum Zitat Li, Z., Chen, L., Nie, L., & Yang, S. X. (2022). A novel learning model of driver fatigue features representation for steering wheel angle. IEEE Transactions on Vehicular Technology, 71(1), 269–281.CrossRef Li, Z., Chen, L., Nie, L., & Yang, S. X. (2022). A novel learning model of driver fatigue features representation for steering wheel angle. IEEE Transactions on Vehicular Technology, 71(1), 269–281.CrossRef
45.
Zurück zum Zitat Wang, S., Guo, H., Zhang, S., Barton, D., & Brooks, P. (2022). Analysis and prediction of double-carriage train wheel wear based on SIMPACK and neural networks. Advances in Mechanical Engineering, 14(3), 16878132221078492.CrossRef Wang, S., Guo, H., Zhang, S., Barton, D., & Brooks, P. (2022). Analysis and prediction of double-carriage train wheel wear based on SIMPACK and neural networks. Advances in Mechanical Engineering, 14(3), 16878132221078492.CrossRef
46.
Zurück zum Zitat Zhao, C., Zhu, Y., Du, Y., Liao, F., & Chan, C. (2022). A novel direct trajectory planning approach based on generative adversarial networks and rapidly-exploring random tree, EEE Transactions on Intelligent Transportation Systems, 1–12. Zhao, C., Zhu, Y., Du, Y., Liao, F., & Chan, C. (2022). A novel direct trajectory planning approach based on generative adversarial networks and rapidly-exploring random tree, EEE Transactions on Intelligent Transportation Systems, 1–12.
47.
Zurück zum Zitat Liu, K., Ke, F., Huang, X., Yu, R., Lin, F., Wu, Y., & Ng, D. W. K. (2021). DeepBAN: A temporal convolution-based communication framework for dynamic WBANs. IEEE Transactions on Communications, 69(10), 6675–6690.CrossRef Liu, K., Ke, F., Huang, X., Yu, R., Lin, F., Wu, Y., & Ng, D. W. K. (2021). DeepBAN: A temporal convolution-based communication framework for dynamic WBANs. IEEE Transactions on Communications, 69(10), 6675–6690.CrossRef
48.
Zurück zum Zitat Zong, C., & Wan, Z. (2022). Container ship cell guide accuracy check technology based on improved 3d Point cloud instance segmentation. Brodogradnja, 73(1), 23–35.CrossRef Zong, C., & Wan, Z. (2022). Container ship cell guide accuracy check technology based on improved 3d Point cloud instance segmentation. Brodogradnja, 73(1), 23–35.CrossRef
49.
Zurück zum Zitat Zong, C., Wang, H., & Wan, Z. (2022). An improved 3D point cloud instance segmentation method for overhead catenary height detection. Computers & Electrical Engineering, 98(1), 107685.CrossRef Zong, C., Wang, H., & Wan, Z. (2022). An improved 3D point cloud instance segmentation method for overhead catenary height detection. Computers & Electrical Engineering, 98(1), 107685.CrossRef
50.
Zurück zum Zitat Meng, F., Zheng, Y., Bao, S., Wang, J., & Yang, S. (2022). Formulaic language identification model based on GCN fusing associated information. PeerJ Computer Science, 8, e984.CrossRef Meng, F., Zheng, Y., Bao, S., Wang, J., & Yang, S. (2022). Formulaic language identification model based on GCN fusing associated information. PeerJ Computer Science, 8, e984.CrossRef
51.
Zurück zum Zitat Xie, Y., Sheng, Y., Qiu, M., & Gui, F. (2022). An adaptive decoding biased random key genetic algorithm for cloud workflow scheduling, Engineering Applications of Artificial Intelligence, 112. Xie, Y., Sheng, Y., Qiu, M., & Gui, F. (2022). An adaptive decoding biased random key genetic algorithm for cloud workflow scheduling, Engineering Applications of Artificial Intelligence, 112.
52.
Zurück zum Zitat Yan, J., Jiao, H., Pu, W., Shi, C., Dai, J., & Liu, H. (2022). Radar sensor network resource allocation for fused target tracking: A brief review. Information Fusion, 86–87, 104–115.CrossRef Yan, J., Jiao, H., Pu, W., Shi, C., Dai, J., & Liu, H. (2022). Radar sensor network resource allocation for fused target tracking: A brief review. Information Fusion, 86–87, 104–115.CrossRef
53.
Zurück zum Zitat Dirik, M., Castillo, O., & Kocamaz, A. F. (2019). Visual-serving based global path planning using interval type-2 fuzzy logic control. Axioms, 8, 58.CrossRef Dirik, M., Castillo, O., & Kocamaz, A. F. (2019). Visual-serving based global path planning using interval type-2 fuzzy logic control. Axioms, 8, 58.CrossRef
Metadaten
Titel
UAV flight path design using multi-objective grasshopper with harmony search for cluster head selection in wireless sensor networks
verfasst von
Peizhen Xing
Hui Zhang
Mohamed E. Ghoneim
Meshal Shutaywi
Publikationsdatum
14.11.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2023
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-03160-0

Weitere Artikel der Ausgabe 2/2023

Wireless Networks 2/2023 Zur Ausgabe

Neuer Inhalt