Skip to main content
Erschienen in: Rare Metals 1/2022

30.06.2021 | Letter

Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design

verfasst von: Chao-Chao Zhou, Zhi Su, Xin-Lei Gao, Rui Cao, Shi-Chun Yang, Xin-Hua Liu

Erschienen in: Rare Metals | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Battery manufacturing holds great promise to build high-performance electrodes with fine‐controlled microstructure, geometry and thickness. However, thick electrodes face concomitant challenge of the sluggish transport of both electrons and Li ions. Here, we present a thick electrode with an aligned structure, as an alternative to achieve high-energy lithium-ion batteries. The freeze-drying process with the aid of gum binder and single-walled carbon nanotubes (SWCNT) is originally developed for preparing the LiNi0.8Co0.1Mn0.1O2 (NCM811)-based aligned structured thick electrode as the representative cathode electrode material. The 1-mm-thick cathode with mass loading of 101 mg·cm−2 achieves a high specific capacity of 203.4 mAh·g−1. Moreover, the as-prepared ultra-thick electrodes with a high mass loading of 538 mg·cm−2 and high active material content of 99.5 wt% are successfully demonstrated, delivering an extremely high areal capacity of 93.4 mAh·cm−2, which represents a > 30-times improvement compared to that of the commercial electrode. This design opens an effective avenue for greener, scalable and sustainable manufacturing processes toward energy storage devices and other related practical applications. …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540.CrossRef Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540.CrossRef
[2]
Zurück zum Zitat Billaud J, Bouville F, Magrini T, Villevieille C, Studart AR. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat Energy. 2016;1(8):1.CrossRef Billaud J, Bouville F, Magrini T, Villevieille C, Studart AR. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat Energy. 2016;1(8):1.CrossRef
[3]
Zurück zum Zitat Yang S, He R, Zhang Z, Cao Y, Gao X, Liu X. Chain: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter. 2020;3(1):27.CrossRef Yang S, He R, Zhang Z, Cao Y, Gao X, Liu X. Chain: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter. 2020;3(1):27.CrossRef
[4]
Zurück zum Zitat Yang R, Zhang XJ, Fan TF, Jiang DP, Wang Q. Improved electrochemical performance of ternary Sn–Sb–Cu nanospheres as anode materials for lithium-ion batteries. Rare Met. 2020;39(10):1159.CrossRef Yang R, Zhang XJ, Fan TF, Jiang DP, Wang Q. Improved electrochemical performance of ternary Sn–Sb–Cu nanospheres as anode materials for lithium-ion batteries. Rare Met. 2020;39(10):1159.CrossRef
[5]
Zurück zum Zitat Jaiser S, Müller M, Baunach M, Bauer W, Scharfer P, Schabel W. Investigation of film solidification and binder migration during drying of Li-ion battery anodes. J Power Sources. 2016;318(30):210.CrossRef Jaiser S, Müller M, Baunach M, Bauer W, Scharfer P, Schabel W. Investigation of film solidification and binder migration during drying of Li-ion battery anodes. J Power Sources. 2016;318(30):210.CrossRef
[6]
Zurück zum Zitat Baunach M, Jaiser S, Schmelzle S, Nirschl H, Scharfer P, Schabel W. Delamination behavior of lithium-ion battery anodes: influence of drying temperature during electrode processing. Dry Technol. 2016;34(4):462.CrossRef Baunach M, Jaiser S, Schmelzle S, Nirschl H, Scharfer P, Schabel W. Delamination behavior of lithium-ion battery anodes: influence of drying temperature during electrode processing. Dry Technol. 2016;34(4):462.CrossRef
[7]
Zurück zum Zitat Liu J, Galpaya DGD, Yan L, Sun M, Lin Z, Yan C, Liang C, Zhang S. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery. Energy Environ Sci. 2017;10(3):750.CrossRef Liu J, Galpaya DGD, Yan L, Sun M, Lin Z, Yan C, Liang C, Zhang S. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery. Energy Environ Sci. 2017;10(3):750.CrossRef
[8]
Zurück zum Zitat Wang H, Zheng P, Yi H, Wang Y, Yang Z, Lei Z, Chen Y, Deng Y, Wang C, Yang Y. Low-cost and environmentally friendly biopolymer binders for Li-S batteries. Macromolecules. 2020;53(19):8539.CrossRef Wang H, Zheng P, Yi H, Wang Y, Yang Z, Lei Z, Chen Y, Deng Y, Wang C, Yang Y. Low-cost and environmentally friendly biopolymer binders for Li-S batteries. Macromolecules. 2020;53(19):8539.CrossRef
[9]
Zurück zum Zitat Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater. 2019;9(33):1901457.CrossRef Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater. 2019;9(33):1901457.CrossRef
[10]
Zurück zum Zitat Shi B, Shang Y, Pei Y, Pei S, Wang L, Heider D, Zhao YY, Zheng C, Yang B, Yarlagadda S, Chou TW, Fu KK. Low Tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework. Nano Lett. 2020;20(7):5504.CrossRef Shi B, Shang Y, Pei Y, Pei S, Wang L, Heider D, Zhao YY, Zheng C, Yang B, Yarlagadda S, Chou TW, Fu KK. Low Tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework. Nano Lett. 2020;20(7):5504.CrossRef
[11]
Zurück zum Zitat Kim JM, Park CH, Wu Q, Lee SY. 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Adv Energy Mater. 2016;6(2):1501594.CrossRef Kim JM, Park CH, Wu Q, Lee SY. 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Adv Energy Mater. 2016;6(2):1501594.CrossRef
[12]
Zurück zum Zitat Chen Y, Wang Y, Wang Z, Zou M, Zhang H, Zhao W, Yousaf M, Yang L, Cao A, Han PRS. Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 sponge. Adv Energy Mater. 2018;8(19):1702981.CrossRef Chen Y, Wang Y, Wang Z, Zou M, Zhang H, Zhao W, Yousaf M, Yang L, Cao A, Han PRS. Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 sponge. Adv Energy Mater. 2018;8(19):1702981.CrossRef
[13]
Zurück zum Zitat Pang GY, Zhuang WD, Bai XT, Ban LQ, Zhao CR, Sun XY. Research advances of co-free and Ni-rich LiNixMn1−xO2 (0.5<x<1) cathode materials. Chin J Rare Met. 2020;44(9):996. Pang GY, Zhuang WD, Bai XT, Ban LQ, Zhao CR, Sun XY. Research advances of co-free and Ni-rich LiNixMn1xO2 (0.5<x<1) cathode materials. Chin J Rare Met. 2020;44(9):996.
[14]
Zurück zum Zitat Braun PV, Cho J, Pikul JH, King WP, Zhang H. High power rechargeable batteries. Curr Opin Solid State Mater Sci. 2012;16(4):186.CrossRef Braun PV, Cho J, Pikul JH, King WP, Zhang H. High power rechargeable batteries. Curr Opin Solid State Mater Sci. 2012;16(4):186.CrossRef
[15]
Zurück zum Zitat Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(14):1600377.CrossRef Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(14):1600377.CrossRef
[16]
Zurück zum Zitat Huang SF, Lv Y, Tie D, Yu Y, Zhao YF. Realizing simultaneously enhanced energy and power density full-cell construction using mixed hard carbon/Li4Ti5O12 electrode. Rare Met. 2021;40(1):65.CrossRef Huang SF, Lv Y, Tie D, Yu Y, Zhao YF. Realizing simultaneously enhanced energy and power density full-cell construction using mixed hard carbon/Li4Ti5O12 electrode. Rare Met. 2021;40(1):65.CrossRef
[17]
Zurück zum Zitat Cheng HM, Li F. Charge delivery goes the distance. Science. 2017;356(6338):582.CrossRef Cheng HM, Li F. Charge delivery goes the distance. Science. 2017;356(6338):582.CrossRef
[18]
Zurück zum Zitat Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X. Hierarchical 3D electrodes for electrochemical energy storage. Nat Rev Mater. 2019;4(1):45.CrossRef Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X. Hierarchical 3D electrodes for electrochemical energy storage. Nat Rev Mater. 2019;4(1):45.CrossRef
[19]
Zurück zum Zitat Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS. Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett. 2012;12(5):2446.CrossRef Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS. Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett. 2012;12(5):2446.CrossRef
[20]
Zurück zum Zitat Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, Ni K, Tao Z, Ikram M, Ji H, Zhu Y. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv Mater. 2016;28(26):5222.CrossRef Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, Ni K, Tao Z, Ikram M, Ji H, Zhu Y. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv Mater. 2016;28(26):5222.CrossRef
[21]
Zurück zum Zitat Zhou L, Ning W, Wu C, Zhang D, Wei W, Ma J, Li C, Chen L. 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Adv Mater Technol. 2019;4(2):1800402. Zhou L, Ning W, Wu C, Zhang D, Wei W, Ma J, Li C, Chen L. 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Adv Mater Technol. 2019;4(2):1800402.
[22]
Zurück zum Zitat Sun C, Liu S, Shi X, Lai C, Liang J, Chen Y. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem Eng J. 2020;381:122641.CrossRef Sun C, Liu S, Shi X, Lai C, Liang J, Chen Y. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem Eng J. 2020;381:122641.CrossRef
[23]
Zurück zum Zitat Zhang ZJ, Zhao J, Qiao ZJ, Wang JM, Sun SH, Fu WX, Zhang XY, Yu ZY, Dou YH, Kang JL, Yuan D, Feng YZ, Ma JM. Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries. Rare Met. 2020;40(2):393.CrossRef Zhang ZJ, Zhao J, Qiao ZJ, Wang JM, Sun SH, Fu WX, Zhang XY, Yu ZY, Dou YH, Kang JL, Yuan D, Feng YZ, Ma JM. Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries. Rare Met. 2020;40(2):393.CrossRef
[24]
Zurück zum Zitat Long JW, Dunn B, Rolison DR, White HS. Three-dimensional battery architectures. Chem Rev. 2004;104(10):4463.CrossRef Long JW, Dunn B, Rolison DR, White HS. Three-dimensional battery architectures. Chem Rev. 2004;104(10):4463.CrossRef
[25]
Zurück zum Zitat Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat Nanotechnol. 2011;6(5):277.CrossRef Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat Nanotechnol. 2011;6(5):277.CrossRef
[26]
Zurück zum Zitat Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci. 2017;10(2):538.CrossRef Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci. 2017;10(2):538.CrossRef
[27]
Zurück zum Zitat Lee SY, Cho SJ, Choi KH, Yoo JT, Kim JH, Lee YH, Chun SJ, Park SB, Choi DH, Wu Q, Lee SY. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv Funct Mater. 2015;25(38):6029.CrossRef Lee SY, Cho SJ, Choi KH, Yoo JT, Kim JH, Lee YH, Chun SJ, Park SB, Choi DH, Wu Q, Lee SY. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv Funct Mater. 2015;25(38):6029.CrossRef
[28]
Zurück zum Zitat Li H, Tao Y, Zheng X, Luo J, Kang F, Cheng HM, Yang QH. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ Sci. 2016;9(10):3135.CrossRef Li H, Tao Y, Zheng X, Luo J, Kang F, Cheng HM, Yang QH. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ Sci. 2016;9(10):3135.CrossRef
[29]
Zurück zum Zitat Wang B, Ryu J, Choi S, Song G, Hong D, Hwang C, Chen X, Wang B, Li W, Song HK, Park S, Ruoff RS. Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano. 2018;12(2):1739.CrossRef Wang B, Ryu J, Choi S, Song G, Hong D, Hwang C, Chen X, Wang B, Li W, Song HK, Park S, Ruoff RS. Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano. 2018;12(2):1739.CrossRef
[30]
Zurück zum Zitat Behr S, Amin R, Chiang YM, Tomsia AP. Highly-structured, additive-free lithium-ion cathodes by freeze-casting technology. CFI Ceram Forum. 2015;92(4):39. Behr S, Amin R, Chiang YM, Tomsia AP. Highly-structured, additive-free lithium-ion cathodes by freeze-casting technology. CFI Ceram Forum. 2015;92(4):39.
[31]
Zurück zum Zitat Sander JS, Erb RM, Li L, Gurijala A, Chiang YM. High-performance battery electrodes via magnetic templating. Nat Energy. 2016;1(8):1.CrossRef Sander JS, Erb RM, Li L, Gurijala A, Chiang YM. High-performance battery electrodes via magnetic templating. Nat Energy. 2016;1(8):1.CrossRef
[32]
Zurück zum Zitat Shi Y, Zhou X, Zhang J, Bruck AM, Bond AC, Marschilok AC, Takeuchi KJ, Takeuchi ES, Yu G. Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in li-ion batteries. Nano Lett. 2017;17(3):1906.CrossRef Shi Y, Zhou X, Zhang J, Bruck AM, Bond AC, Marschilok AC, Takeuchi KJ, Takeuchi ES, Yu G. Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in li-ion batteries. Nano Lett. 2017;17(3):1906.CrossRef
[33]
Zurück zum Zitat Sereno NM, Hill SE, Mitchell JR. Impact of the extrusion process on xanthan gum behaviour. Carbohydr Res. 2007;342(10):1333.CrossRef Sereno NM, Hill SE, Mitchell JR. Impact of the extrusion process on xanthan gum behaviour. Carbohydr Res. 2007;342(10):1333.CrossRef
[34]
Zurück zum Zitat Morris ER, Nishinari K, Rinaudo, M. Gelation of gellan-a review. Food Hydrocoll. 2012; 28(2):373.CrossRef Morris ER, Nishinari K, Rinaudo, M. Gelation of gellan-a review. Food Hydrocoll. 2012; 28(2):373.CrossRef
[35]
Zurück zum Zitat Mudgil D, Barak S, Khatkar BS. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int J Biol Macromol. 2012;50(4):1035.CrossRef Mudgil D, Barak S, Khatkar BS. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int J Biol Macromol. 2012;50(4):1035.CrossRef
[36]
Zurück zum Zitat Velimirovic M, Chen H, Simons Q, Bastiaens L. Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. J Contam Hydrol. 2012;142–143:1.CrossRef Velimirovic M, Chen H, Simons Q, Bastiaens L. Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. J Contam Hydrol. 2012;142–143:1.CrossRef
[37]
Zurück zum Zitat Maia AMS, Silva HVM, Curti PS, Balaban RC. Study of the reaction of grafting acrylamide onto xanthan gum. Carbohydr Polym. 2012;90(2):778.CrossRef Maia AMS, Silva HVM, Curti PS, Balaban RC. Study of the reaction of grafting acrylamide onto xanthan gum. Carbohydr Polym. 2012;90(2):778.CrossRef
Metadaten
Titel
Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design
verfasst von
Chao-Chao Zhou
Zhi Su
Xin-Lei Gao
Rui Cao
Shi-Chun Yang
Xin-Hua Liu
Publikationsdatum
30.06.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 1/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01785-2

Weitere Artikel der Ausgabe 1/2022

Rare Metals 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.