Skip to main content

2022 | OriginalPaper | Buchkapitel

4. Ultrasonic Testing Techniques for Nondestructive Evaluation of Fiber-Reinforced Composite Structures

verfasst von : Shuncong Zhong, Walter Nsengiyumva

Erschienen in: Nondestructive Testing and Evaluation of Fiber-Reinforced Composite Structures

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recent years have been characterized by significant breakthroughs in the development and utilization of ultrasonic-based NDT techniques for the detection and characterization of various types of flaws in a wide range of fiber-reinforced composite materials. However, ultrasonic-based NDT techniques have also been the subject of intense criticisms due to the limitations that they inflict on the plants and the cost of the maintenance downtime while inspecting in-service composites structures and/or components. Attempting to address these challenges, major modifications have been implemented including the improvement of the methods of sending ultrasonic waves into the test structure (e.g., by contact between ultrasonic probes and test structure, immersion or ‘water delay line’ testing, air-coupled ultrasonic, laser ultrasonic testing, electromagnetic acoustic transducers, etc.). Each of these approaches presents its own advantages and disadvantages depending on the application, size of the test structure, and accessibility (i.e., access to one side or both sides of the test structure). Typically, localized or point testing can be achieved using water, gel, or grease coupling but achieving and maintaining constant coupling via these substances does add considerable time to the successful completion. Although an air-coupled ultrasonic system can be applied while the test structure remains in use and does not require additional acoustic couplants, overcoming the high impedance mismatch between the transducer/air and subsequent air/component interfaces is not a trivial success, and requires several modifications. Apart from the methodologies of sending ultrasonic waves into the test structures, additional improvements include the speed of the scan, improved spatial resolution, and advanced flaw detection capabilities of ultrasonic systems that are constantly being achieved, which prompted the design of fully portable systems that can be used in the field even in structures with complex geometries where accessibility is perceived to be challenging. Perhaps one of the most interesting advances is the recent development of the FlawInspecta system, which features high-speed ultrasonic array imaging fixtures that use a relatively low-cost ultrasonic array driver platform for operation. The FlawInspecta system also allows for the simultaneous scanning of a large area and includes additional fixtures to help users to overcome the problems of coupling. In general, ultrasonic NDT systems remain excellent tools for use in assembly lines during the manufacturing process of composite structures to ensure high-quality structures are manufactured and guaranteed their predicted life span while in-service. Nevertheless, a few challenges such as the difficulty of set up makes the system difficult to operate by the general NDT practitioners and requires a high level of skills and/or training for operators to be able to accurately scan the composite and interpret the test results. Although the capabilities of ultrasonic-based inspection techniques have been demonstrated at certain frequencies, studies employing appropriately-sized deeply buried flaws are still warranted to determine the reliability of use in thick fiber-reinforced composite structures. To date, significant advancements in ultrasonic inspection are still limited by the lack of sufficient lower-frequency, higher power evaluation systems which are likely to be overcome soon with the constantly observed cost reduction of phased array ultrasonic probes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92(12), 2793–2810 (2010) R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92(12), 2793–2810 (2010)
15.
Zurück zum Zitat S. Zhong, Progress in terahertz nondestructive testing: a review. Front. Mech. Eng. 1–9 (2018) S. Zhong, Progress in terahertz nondestructive testing: a review. Front. Mech. Eng. 1–9 (2018)
16.
Zurück zum Zitat R.B. Heslehurst, Defects and Damage in Composite Materials and Structures (CRC Press, 2014) R.B. Heslehurst, Defects and Damage in Composite Materials and Structures (CRC Press, 2014)
21.
Zurück zum Zitat V.M. Karbhari, Non-destructive Evaluation (NDE) of Polymer Matrix Composites (Elsevier, 2013) V.M. Karbhari, Non-destructive Evaluation (NDE) of Polymer Matrix Composites (Elsevier, 2013)
22.
Zurück zum Zitat A. Wronkowicz-Katunin, A. Katunin, K. Dragan, Reconstruction of barely visible impact damage in composite structures based on non-destructive evaluation results. Sensors 19(21), Art. no. 21, January 2019. https://doi.org/10.3390/s19214629 A. Wronkowicz-Katunin, A. Katunin, K. Dragan, Reconstruction of barely visible impact damage in composite structures based on non-destructive evaluation results. Sensors 19(21), Art. no. 21, January 2019. https://​doi.​org/​10.​3390/​s19214629
23.
Zurück zum Zitat J. Wertz, L. Homa, J. Welter, D. Sparkman, J.C. Aldrin, Case study of model-based inversion of the angle beam ultrasonic response from composite impact damage. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst., 1(4), November 2018. https://doi.org/10.1115/1.4040233 J. Wertz, L. Homa, J. Welter, D. Sparkman, J.C. Aldrin, Case study of model-based inversion of the angle beam ultrasonic response from composite impact damage. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst., 1(4), November 2018. https://​doi.​org/​10.​1115/​1.​4040233
24.
Zurück zum Zitat M.A. Caminero, I. García-Moreno, G.P. Rodríguez, Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: effects of laminate thickness and ply-stacking sequence. Polym. Test. 63, 530–541 (2017)CrossRef M.A. Caminero, I. García-Moreno, G.P. Rodríguez, Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: effects of laminate thickness and ply-stacking sequence. Polym. Test. 63, 530–541 (2017)CrossRef
27.
Zurück zum Zitat W. He, L. Yao, X. Meng, G. Sun, D. Xie, J. Liu, Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets. Thin-Walled Struct. 137, 411–432 (2019)CrossRef W. He, L. Yao, X. Meng, G. Sun, D. Xie, J. Liu, Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets. Thin-Walled Struct. 137, 411–432 (2019)CrossRef
28.
Zurück zum Zitat G.S. Langdon, C.J. Von Klemperer, B.K. Rowland, G.N. Nurick, The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments. Eng. Struct. 36, 104–112 (2012)CrossRef G.S. Langdon, C.J. Von Klemperer, B.K. Rowland, G.N. Nurick, The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments. Eng. Struct. 36, 104–112 (2012)CrossRef
32.
Zurück zum Zitat J. Summerscales, Non-destructive Testing of Fibre-Reinforced Plastics Composites, vol. 2 (Springer Science & Business Media, 1990) J. Summerscales, Non-destructive Testing of Fibre-Reinforced Plastics Composites, vol. 2 (Springer Science & Business Media, 1990)
33.
Zurück zum Zitat S. Rokhlin, D. Chimenti, P. Nagy, Physical Ultrasonics of Composites (Oxford University Press, 2011) S. Rokhlin, D. Chimenti, P. Nagy, Physical Ultrasonics of Composites (Oxford University Press, 2011)
34.
Zurück zum Zitat P.E. Irving, C. Soutis, Polymer Composites in the Aerospace Industry (Woodhead Publishing, 2019) P.E. Irving, C. Soutis, Polymer Composites in the Aerospace Industry (Woodhead Publishing, 2019)
36.
Zurück zum Zitat J. Krautkrämer, H. Krautkrämer, Ultrasonic Testing of Materials (Springer Science & Business Media, 2013) J. Krautkrämer, H. Krautkrämer, Ultrasonic Testing of Materials (Springer Science & Business Media, 2013)
38.
Zurück zum Zitat M.E. Ibrahim, Nondestructive testing and structural health monitoring of marine composite structures, in Marine Applications of Advanced Fibre-Reinforced Composites (Elsevier, 2016), pp. 147–183 M.E. Ibrahim, Nondestructive testing and structural health monitoring of marine composite structures, in Marine Applications of Advanced Fibre-Reinforced Composites (Elsevier, 2016), pp. 147–183
39.
Zurück zum Zitat K.-J. Langenberg, R. Marklein, K. Mayer, Ultrasonic Nondestructive Testing of Materials: Theoretical Foundations (CRC Press, 2012) K.-J. Langenberg, R. Marklein, K. Mayer, Ultrasonic Nondestructive Testing of Materials: Theoretical Foundations (CRC Press, 2012)
45.
Zurück zum Zitat M. Ourak, M. Ouaftouh, M. Duquennoy, W.J. Xu, Characterization of the ply boundaries in carbone-epoxy composite materials using longitudinal ultrasonic waves, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti, (Springer, US, 1998), pp. 1147–1154. https://doi.org/10.1007/978-1-4615-5339-7_148 M. Ourak, M. Ouaftouh, M. Duquennoy, W.J. Xu, Characterization of the ply boundaries in carbone-epoxy composite materials using longitudinal ultrasonic waves, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti, (Springer, US, 1998), pp. 1147–1154. https://​doi.​org/​10.​1007/​978-1-4615-5339-7_​148
48.
Zurück zum Zitat J. Isla, F. Cegla, EMAT phased array: a feasibility study of surface crack detection. Ultrasonics 78, 1–9 (2017)CrossRef J. Isla, F. Cegla, EMAT phased array: a feasibility study of surface crack detection. Ultrasonics 78, 1–9 (2017)CrossRef
54.
Zurück zum Zitat J.L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge University Press, 2014) J.L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge University Press, 2014)
64.
Zurück zum Zitat D.E. Chimenti, Review of air-coupled ultrasonic materials characterization. Ultrasonics 54(7), 1804–1816 (2014)CrossRef D.E. Chimenti, Review of air-coupled ultrasonic materials characterization. Ultrasonics 54(7), 1804–1816 (2014)CrossRef
65.
Zurück zum Zitat C. Li, D. Pain, P.D. Wilcox, B.W. Drinkwater, Imaging composite material using ultrasonic arrays. Ndt E Int. 53, 8–17 (2013)CrossRef C. Li, D. Pain, P.D. Wilcox, B.W. Drinkwater, Imaging composite material using ultrasonic arrays. Ndt E Int. 53, 8–17 (2013)CrossRef
66.
Zurück zum Zitat R.S. Frankle, D.N. Rose, Flexible ultrasonic array system for inspecting thick composite structures. Nondestruct. Eval. Aging Maritime Appl. 2459, 51–59 (1995)CrossRef R.S. Frankle, D.N. Rose, Flexible ultrasonic array system for inspecting thick composite structures. Nondestruct. Eval. Aging Maritime Appl. 2459, 51–59 (1995)CrossRef
67.
Zurück zum Zitat I.N. Komsky, J.D. Achenbach, Application of a self-calibrating ultrasonic technique to the detection of fatigue cracks by the use of Lamb waves, in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1993), pp. 2167–2174 I.N. Komsky, J.D. Achenbach, Application of a self-calibrating ultrasonic technique to the detection of fatigue cracks by the use of Lamb waves, in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1993), pp. 2167–2174
68.
Zurück zum Zitat J.D. Achenbach, A modified self-compensating ultrasonic technique for flaw characterization in steel bridge structures,” in Review of Progress in Quantitative Nondestructive Evaluation (Plenum Press, 1994), pp. 2107–2114 J.D. Achenbach, A modified self-compensating ultrasonic technique for flaw characterization in steel bridge structures,” in Review of Progress in Quantitative Nondestructive Evaluation (Plenum Press, 1994), pp. 2107–2114
69.
Zurück zum Zitat C.B. Scruby, L.E. Drain, Laser Ultrasonics Techniques and Applications (CRC Press, 1990) C.B. Scruby, L.E. Drain, Laser Ultrasonics Techniques and Applications (CRC Press, 1990)
77.
Zurück zum Zitat C.-T. Kuo, Y.-C. Lee, Non-immersive ultrasound scanning and inspection of internal defects using a water droplet coupling device. J. Nondestruct. Eval. 35(2), 27 (2016)CrossRef C.-T. Kuo, Y.-C. Lee, Non-immersive ultrasound scanning and inspection of internal defects using a water droplet coupling device. J. Nondestruct. Eval. 35(2), 27 (2016)CrossRef
78.
Zurück zum Zitat K. Terekhov, S. Borisenkov, Acoustic microscopy is the optimal solution for quality control in the production of electronic components. Technol. Electron. Ind. 7, 79–82 (2012) K. Terekhov, S. Borisenkov, Acoustic microscopy is the optimal solution for quality control in the production of electronic components. Technol. Electron. Ind. 7, 79–82 (2012)
79.
Zurück zum Zitat D.O. Dolmatov, V. Abramets, Application of frequency-domain algorithms in ultrasound imaging of composite materials, in MATEC Web of Conferences, Vol. 48: Space Engineering—Les Ulis (2016), p. 3004 D.O. Dolmatov, V. Abramets, Application of frequency-domain algorithms in ultrasound imaging of composite materials, in MATEC Web of Conferences, Vol. 48: Space Engineering—Les Ulis (2016), p. 3004
80.
Zurück zum Zitat Q. Shen, M. Omar, S. Dongri, Ultrasonic NDE techniques for impact damage inspection on CFRP laminates. J. Mater. Sci. Res. 1(1), 2 (2012) Q. Shen, M. Omar, S. Dongri, Ultrasonic NDE techniques for impact damage inspection on CFRP laminates. J. Mater. Sci. Res. 1(1), 2 (2012)
81.
Zurück zum Zitat J. Dong, B. Kim, A. Locquet, P. McKeon, N. Declercq, D.S. Citrin, Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos. Part B Eng. 79, 667–675 (2015)CrossRef J. Dong, B. Kim, A. Locquet, P. McKeon, N. Declercq, D.S. Citrin, Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos. Part B Eng. 79, 667–675 (2015)CrossRef
82.
Zurück zum Zitat V.K. Kinra, A.S. Ganpatye, K. Maslov, Ultrasonic ply-by-ply detection of matrix cracks in laminated composites. J. Nondestruct. Eval. 25(1), 37–49 (2006)CrossRef V.K. Kinra, A.S. Ganpatye, K. Maslov, Ultrasonic ply-by-ply detection of matrix cracks in laminated composites. J. Nondestruct. Eval. 25(1), 37–49 (2006)CrossRef
83.
Zurück zum Zitat A. Katunin, K. Dragan, M. Dziendzikowski, Damage identification in aircraft composite structures: a case study using various non-destructive testing techniques. Compos. Struct. 127, 1–9 (2015)CrossRef A. Katunin, K. Dragan, M. Dziendzikowski, Damage identification in aircraft composite structures: a case study using various non-destructive testing techniques. Compos. Struct. 127, 1–9 (2015)CrossRef
84.
Zurück zum Zitat S.K. Chakrapani, D.J. Barnard, V. Dayal, Influence of fiber orientation on the inherent acoustic nonlinearity in carbon fiber reinforced composites. J. Acoust. Soc. Am. 137(2), 617–624 (2015)CrossRef S.K. Chakrapani, D.J. Barnard, V. Dayal, Influence of fiber orientation on the inherent acoustic nonlinearity in carbon fiber reinforced composites. J. Acoust. Soc. Am. 137(2), 617–624 (2015)CrossRef
85.
Zurück zum Zitat G. Sun, Z. Zhou, Characterization of delaminations in composite laminates by laser ultrasonics. Mater. Test. 58(10), 877–886 (2016)CrossRef G. Sun, Z. Zhou, Characterization of delaminations in composite laminates by laser ultrasonics. Mater. Test. 58(10), 877–886 (2016)CrossRef
86.
Zurück zum Zitat S. Gholizadeh, A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 1, 50–57 (2016)CrossRef S. Gholizadeh, A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 1, 50–57 (2016)CrossRef
87.
Zurück zum Zitat S.-C. Her, W.-B. Chu, 3D surface profile construction and flaw detection in a composite structure. Strength Mater. 51(1), 130–137 (2019)CrossRef S.-C. Her, W.-B. Chu, 3D surface profile construction and flaw detection in a composite structure. Strength Mater. 51(1), 130–137 (2019)CrossRef
88.
Zurück zum Zitat T.M. Loganathan, M.T.H. Sultan, M.K. Gobalakrishnan, Ultrasonic inspection of natural fiber-reinforced composites, in Sustainable Composites for Aerospace Applications (Elsevier, 2018), pp. 227–251 T.M. Loganathan, M.T.H. Sultan, M.K. Gobalakrishnan, Ultrasonic inspection of natural fiber-reinforced composites, in Sustainable Composites for Aerospace Applications (Elsevier, 2018), pp. 227–251
89.
Zurück zum Zitat N. Pérez, F. Buiochi, D. Yamashita, M.A. Andrade, J.C. Adamowski, Evaluation of multiple reflections in the characterization of anisotropic materials by through transmission ultrasonic technique. Phys. Procedia 70, 402–405 (2015)CrossRef N. Pérez, F. Buiochi, D. Yamashita, M.A. Andrade, J.C. Adamowski, Evaluation of multiple reflections in the characterization of anisotropic materials by through transmission ultrasonic technique. Phys. Procedia 70, 402–405 (2015)CrossRef
90.
Zurück zum Zitat J. Padiyar, K. Balasubramaniam, Lamb-wave-based structural health monitoring technique for inaccessible regions in complex composite structures. Struct. Control Health Monit. 5(21), 817–832 (2014) J. Padiyar, K. Balasubramaniam, Lamb-wave-based structural health monitoring technique for inaccessible regions in complex composite structures. Struct. Control Health Monit. 5(21), 817–832 (2014)
91.
Zurück zum Zitat C.A.C. Leckey, M.D. Rogge, F.R. Parker, Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment. Ultrasonics 54(1), 385–394 (2014)CrossRef C.A.C. Leckey, M.D. Rogge, F.R. Parker, Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment. Ultrasonics 54(1), 385–394 (2014)CrossRef
93.
Zurück zum Zitat K. Diamanti, C. Soutis, Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 46(8), 342–352 (2010)CrossRef K. Diamanti, C. Soutis, Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 46(8), 342–352 (2010)CrossRef
94.
Zurück zum Zitat Y. Zhong, S. Yuan, L. Qiu, Multiple damage detection on aircraft composite structures using near-field MUSIC algorithm. Sens. Actuators Phys. 214, 234–244 (2014)CrossRef Y. Zhong, S. Yuan, L. Qiu, Multiple damage detection on aircraft composite structures using near-field MUSIC algorithm. Sens. Actuators Phys. 214, 234–244 (2014)CrossRef
95.
Zurück zum Zitat F. Aymerich, W.J. Staszewski, Impact damage detection in composite laminates using nonlinear acoustics. Compos. Part Appl. Sci. Manuf. 41(9), 1084–1092 (2010)CrossRef F. Aymerich, W.J. Staszewski, Impact damage detection in composite laminates using nonlinear acoustics. Compos. Part Appl. Sci. Manuf. 41(9), 1084–1092 (2010)CrossRef
96.
Zurück zum Zitat B. Park, Y.-K. An, H. Sohn, Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos. Sci. Technol. 100, 10–18 (2014)CrossRef B. Park, Y.-K. An, H. Sohn, Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos. Sci. Technol. 100, 10–18 (2014)CrossRef
97.
Zurück zum Zitat A. Klepka, W.J. Staszewski, D. Di Maio, F. Scarpa, Impact damage detection in composite chiral sandwich panels using nonlinear vibro-acoustic modulations. Smart Mater. Struct. 22(8), 84011 (2013)CrossRef A. Klepka, W.J. Staszewski, D. Di Maio, F. Scarpa, Impact damage detection in composite chiral sandwich panels using nonlinear vibro-acoustic modulations. Smart Mater. Struct. 22(8), 84011 (2013)CrossRef
98.
Zurück zum Zitat W.J. Staszewski, S. Mahzan, R. Traynor, Health monitoring of aerospace composite structures—active and passive approach. Compos. Sci. Technol. 69(11–12), 1678–1685 (2009)CrossRef W.J. Staszewski, S. Mahzan, R. Traynor, Health monitoring of aerospace composite structures—active and passive approach. Compos. Sci. Technol. 69(11–12), 1678–1685 (2009)CrossRef
99.
Zurück zum Zitat A.R. Clough, R.S. Edwards, Characterisation of hidden defects using the near-field ultrasonic enhancement of Lamb waves. Ultrasonics 59, 64–71 (2015)CrossRef A.R. Clough, R.S. Edwards, Characterisation of hidden defects using the near-field ultrasonic enhancement of Lamb waves. Ultrasonics 59, 64–71 (2015)CrossRef
100.
Zurück zum Zitat R.H. Bossi et al., System and method for testing a composite structure using a laser ultrasound testing system. Google Patents, April 18, 2017 R.H. Bossi et al., System and method for testing a composite structure using a laser ultrasound testing system. Google Patents, April 18, 2017
101.
Zurück zum Zitat A.N. Kravcov et al., Laser-ultrasonic testing of the structure and properties of concrete and carbon fiber-reinforced plastics. Key Eng. Mater. 722, 267–272 (2017)CrossRef A.N. Kravcov et al., Laser-ultrasonic testing of the structure and properties of concrete and carbon fiber-reinforced plastics. Key Eng. Mater. 722, 267–272 (2017)CrossRef
102.
Zurück zum Zitat V.A. Strizhak, R.R. Hasanov, A.V. Pryakhin, Features of excitation of an electromagnetic acoustic transducer under a waveguide method of testing. Bull. Kalashnikov ISTU 21(2), 159–166 (2018)CrossRef V.A. Strizhak, R.R. Hasanov, A.V. Pryakhin, Features of excitation of an electromagnetic acoustic transducer under a waveguide method of testing. Bull. Kalashnikov ISTU 21(2), 159–166 (2018)CrossRef
103.
Zurück zum Zitat S. Xie, M. Tian, P. Xiao, C. Pei, Z. Chen, T. Takagi, A hybrid nondestructive testing method of pulsed eddy current testing and electromagnetic acoustic transducer techniques for simultaneous surface and volumetric defects inspection. NDT E Int. 86, 153–163 (2017)CrossRef S. Xie, M. Tian, P. Xiao, C. Pei, Z. Chen, T. Takagi, A hybrid nondestructive testing method of pulsed eddy current testing and electromagnetic acoustic transducer techniques for simultaneous surface and volumetric defects inspection. NDT E Int. 86, 153–163 (2017)CrossRef
104.
Zurück zum Zitat R.J. Dewhurst, C. Edwards, A.D.W. McKie, S.B. Palmer, A remote laser system for ultrasonic velocity measurement at high temperatures. J. Appl. Phys. 63(4), 1225–1227 (1988)CrossRef R.J. Dewhurst, C. Edwards, A.D.W. McKie, S.B. Palmer, A remote laser system for ultrasonic velocity measurement at high temperatures. J. Appl. Phys. 63(4), 1225–1227 (1988)CrossRef
105.
Zurück zum Zitat W. Harizi, S. Chaki, G. Bourse, M. Ourak, Mechanical damage characterization of glass fiber-reinforced polymer laminates by ultrasonic maps. Compos. Part B Eng. 70, 131–137 (2015)CrossRef W. Harizi, S. Chaki, G. Bourse, M. Ourak, Mechanical damage characterization of glass fiber-reinforced polymer laminates by ultrasonic maps. Compos. Part B Eng. 70, 131–137 (2015)CrossRef
106.
Zurück zum Zitat B. Masserey, C. Raemy, P. Fromme, High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures. Ultrasonics 54(7), 1720–1728 (2014)CrossRef B. Masserey, C. Raemy, P. Fromme, High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures. Ultrasonics 54(7), 1720–1728 (2014)CrossRef
107.
Zurück zum Zitat H. Chan, B. Masserey, P. Fromme, High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures. Smart Mater. Struct. 24(2), 25037 (2015)CrossRef H. Chan, B. Masserey, P. Fromme, High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures. Smart Mater. Struct. 24(2), 25037 (2015)CrossRef
108.
Zurück zum Zitat M.S. Harb, F.G. Yuan, Non-contact ultrasonic technique for Lamb wave characterization in composite plates. Ultrasonics 64, 162–169 (2016)CrossRef M.S. Harb, F.G. Yuan, Non-contact ultrasonic technique for Lamb wave characterization in composite plates. Ultrasonics 64, 162–169 (2016)CrossRef
109.
Zurück zum Zitat Z. Tian, L. Yu, C. Leckey, Delamination detection and quantification on laminated composite structures with Lamb waves and wavenumber analysis. J. Intell. Mater. Syst. Struct. 26(13), 1723–1738 (2015)CrossRef Z. Tian, L. Yu, C. Leckey, Delamination detection and quantification on laminated composite structures with Lamb waves and wavenumber analysis. J. Intell. Mater. Syst. Struct. 26(13), 1723–1738 (2015)CrossRef
110.
Zurück zum Zitat M. Mitra, S. Gopalakrishnan, Guided wave based structural health monitoring: a review. Smart Mater. Struct. 25(5), 53001 (2016)CrossRef M. Mitra, S. Gopalakrishnan, Guided wave based structural health monitoring: a review. Smart Mater. Struct. 25(5), 53001 (2016)CrossRef
111.
Zurück zum Zitat V.T. Rathod, D.R. Mahapatra, Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers. NDT E Int. 44(7), 628–636 (2011)CrossRef V.T. Rathod, D.R. Mahapatra, Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers. NDT E Int. 44(7), 628–636 (2011)CrossRef
112.
Zurück zum Zitat A.A. Nasedkina, A. Alexiev, J. Malachowski, Numerical simulation of ultrasonic torsional guided wave propagation for pipes with defects, in Advanced Materials (Springer, 2016), pp. 475–488 A.A. Nasedkina, A. Alexiev, J. Malachowski, Numerical simulation of ultrasonic torsional guided wave propagation for pipes with defects, in Advanced Materials (Springer, 2016), pp. 475–488
113.
Zurück zum Zitat A. Løvstad, P. Cawley, The reflection of the fundamental torsional guided wave from multiple circular holes in pipes. NDT E Int. 44(7), 553–562 (2011)CrossRef A. Løvstad, P. Cawley, The reflection of the fundamental torsional guided wave from multiple circular holes in pipes. NDT E Int. 44(7), 553–562 (2011)CrossRef
114.
Zurück zum Zitat M.A. Caminero, I. García-Moreno, G.P. Rodríguez, J.M. Chacón, Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites. Compos. Part B Eng. 165, 131–142 (2019)CrossRef M.A. Caminero, I. García-Moreno, G.P. Rodríguez, J.M. Chacón, Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites. Compos. Part B Eng. 165, 131–142 (2019)CrossRef
115.
Zurück zum Zitat A. Wronkowicz, A. Katunin, Damage evaluation in composite structures based on image processing of ultrasonic C-scans. Stud. Inform. 38(1B), 31–40 (2017) A. Wronkowicz, A. Katunin, Damage evaluation in composite structures based on image processing of ultrasonic C-scans. Stud. Inform. 38(1B), 31–40 (2017)
116.
Zurück zum Zitat P. Duchene, S. Chaki, A. Ayadi, P. Krawczak, A review of non-destructive techniques used for mechanical damage assessment in polymer composites. J. Mater. Sci. 53(11), 7915–7938 (2018)CrossRef P. Duchene, S. Chaki, A. Ayadi, P. Krawczak, A review of non-destructive techniques used for mechanical damage assessment in polymer composites. J. Mater. Sci. 53(11), 7915–7938 (2018)CrossRef
117.
Zurück zum Zitat S. Zhou, P. Yao, C. Xu, X. Hu, Multimode testing for delamination defects of composite materials using ultrasonic guided waves, in 2019 Far East NDT New Technology & Application Forum (FENDT) (2019), pp. 187–191 S. Zhou, P. Yao, C. Xu, X. Hu, Multimode testing for delamination defects of composite materials using ultrasonic guided waves, in 2019 Far East NDT New Technology & Application Forum (FENDT) (2019), pp. 187–191
118.
Zurück zum Zitat A. Wronkowicz, K. Dragan, K. Lis, Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures. Compos. Struct. 203, 71–84 (2018)CrossRef A. Wronkowicz, K. Dragan, K. Lis, Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures. Compos. Struct. 203, 71–84 (2018)CrossRef
119.
Zurück zum Zitat J. Sun et al., Automated quality characterization for composites using hybrid ultrasonic imaging techniques. Res. Nondestruct. Eval. 30(4), 205–230 (2019)CrossRef J. Sun et al., Automated quality characterization for composites using hybrid ultrasonic imaging techniques. Res. Nondestruct. Eval. 30(4), 205–230 (2019)CrossRef
120.
Zurück zum Zitat B. Ren, C.J. Lissenden, Ultrasonic guided wave inspection of adhesive bonds between composite laminates. Int. J. Adhes. Adhes. 45, 59–68 (2013)CrossRef B. Ren, C.J. Lissenden, Ultrasonic guided wave inspection of adhesive bonds between composite laminates. Int. J. Adhes. Adhes. 45, 59–68 (2013)CrossRef
121.
Zurück zum Zitat R.L.V. Kumar, M.R. Bhat, C.R.L. Murthy, Some studies on evaluation of degradation in composite adhesive joints using ultrasonic techniques. Ultrasonics 53(6), 1150–1162 (2013)CrossRef R.L.V. Kumar, M.R. Bhat, C.R.L. Murthy, Some studies on evaluation of degradation in composite adhesive joints using ultrasonic techniques. Ultrasonics 53(6), 1150–1162 (2013)CrossRef
122.
Zurück zum Zitat K.K. Borum, Evaluation of the quality of thick fibre composites using immersion and air-coupled ultrasonic techniques (2006) K.K. Borum, Evaluation of the quality of thick fibre composites using immersion and air-coupled ultrasonic techniques (2006)
123.
Zurück zum Zitat P. Bělský, M. Kadlec, Capability of non-destructive techniques in evaluating damage to composite sandwich structures. Int. J. Struct. Integr. (2019) P. Bělský, M. Kadlec, Capability of non-destructive techniques in evaluating damage to composite sandwich structures. Int. J. Struct. Integr. (2019)
124.
Zurück zum Zitat G. Sun, Z. Zhou, X. Chen, J. Wang, Ultrasonic characterization of delamination in aeronautical composites using noncontact laser generation and detection. Appl. Opt. 52(26), 6481–6486 (2013)CrossRef G. Sun, Z. Zhou, X. Chen, J. Wang, Ultrasonic characterization of delamination in aeronautical composites using noncontact laser generation and detection. Appl. Opt. 52(26), 6481–6486 (2013)CrossRef
125.
Zurück zum Zitat G. F. Hawkins, P. M. Sheaffer, and E. C. Johnson, “NDE of thick composites in the aerospace industry—an overview,” in Review of Progress in Quantitative Nondestructive Evaluation, Springer, 1991, pp. 1591–1597. G. F. Hawkins, P. M. Sheaffer, and E. C. Johnson, “NDE of thick composites in the aerospace industry—an overview,” in Review of Progress in Quantitative Nondestructive Evaluation, Springer, 1991, pp. 1591–1597.
126.
Zurück zum Zitat M.V. Felice, Z. Fan, Sizing of flaws using ultrasonic bulk wave testing: a review. Ultrasonics 88, 26–42 (2018)CrossRef M.V. Felice, Z. Fan, Sizing of flaws using ultrasonic bulk wave testing: a review. Ultrasonics 88, 26–42 (2018)CrossRef
127.
Zurück zum Zitat C. Holmes, B.W. Drinkwater, P.D. Wilcox, Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDT E Int. 38(8), 701–711 (2005)CrossRef C. Holmes, B.W. Drinkwater, P.D. Wilcox, Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDT E Int. 38(8), 701–711 (2005)CrossRef
128.
Zurück zum Zitat G.M. Revel, G. Pandarese, A. Cavuto, Advanced ultrasonic non-destructive testing for damage detection on thick and curved composite elements for constructions. J. Sandw. Struct. Mater. 15(1), 5–24 (2013)CrossRef G.M. Revel, G. Pandarese, A. Cavuto, Advanced ultrasonic non-destructive testing for damage detection on thick and curved composite elements for constructions. J. Sandw. Struct. Mater. 15(1), 5–24 (2013)CrossRef
129.
Zurück zum Zitat D.K. Hsu, D.J. Barnard, Inspecting composites with airborne ultrasound: through thick and thin. AIP Conf. Proc. 820(1), 991–998 (2006)CrossRef D.K. Hsu, D.J. Barnard, Inspecting composites with airborne ultrasound: through thick and thin. AIP Conf. Proc. 820(1), 991–998 (2006)CrossRef
130.
Zurück zum Zitat C.M. Fortunko, D.W. Fitting, Apropriate ultrasonic system components for NDE of thick polymer-composites, in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1991), pp. 2105–2112 C.M. Fortunko, D.W. Fitting, Apropriate ultrasonic system components for NDE of thick polymer-composites, in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1991), pp. 2105–2112
131.
Zurück zum Zitat A.P. Mouritz, R.E. Luescher, Preliminary ultrasonic inspection of the Huon Clas s Minehunter Coastal,” Report No. DSTO-TR-0592, Defence Science and Technolog y Organisation (1997) A.P. Mouritz, R.E. Luescher, Preliminary ultrasonic inspection of the Huon Clas s Minehunter Coastal,” Report No. DSTO-TR-0592, Defence Science and Technolog y Organisation (1997)
132.
Zurück zum Zitat A.P. Mouritz, C. Townsend, M.Z.S. Khan, Non-destructive detection of fatigue damage in thick composites by pulse-echo ultrasonics. Compos. Sci. Technol. 60(1), 23–32 (2000)CrossRef A.P. Mouritz, C. Townsend, M.Z.S. Khan, Non-destructive detection of fatigue damage in thick composites by pulse-echo ultrasonics. Compos. Sci. Technol. 60(1), 23–32 (2000)CrossRef
133.
Zurück zum Zitat R.N. Emerson, D.G. Pollock, D.I. McLean, K.J. Fridley, R.J. Ross, R.E. Pellerin, Nondestructive testing of large bridge timbers, in Proceedings of the 10th International Symposium on Nondestructive Testing of Wood (1998), pp. 175–184 R.N. Emerson, D.G. Pollock, D.I. McLean, K.J. Fridley, R.J. Ross, R.E. Pellerin, Nondestructive testing of large bridge timbers, in Proceedings of the 10th International Symposium on Nondestructive Testing of Wood (1998), pp. 175–184
134.
Zurück zum Zitat M. Cetkovic, Thermal buckling of laminated composite plates using layerwise displacement model. Compos. Struct. 142, 238–253 (2016)CrossRef M. Cetkovic, Thermal buckling of laminated composite plates using layerwise displacement model. Compos. Struct. 142, 238–253 (2016)CrossRef
135.
Zurück zum Zitat C.M. Teller, C.M. Fortunko, NDE requirements for thick marine composites, in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1991), pp. 1599–1606 C.M. Teller, C.M. Fortunko, NDE requirements for thick marine composites, in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1991), pp. 1599–1606
136.
Zurück zum Zitat I.M. Daniel, S.C. Wooh, Ultrasonic techniques for characterization of manufacturing defects in thick composites, in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1989), pp. 1605–1612 I.M. Daniel, S.C. Wooh, Ultrasonic techniques for characterization of manufacturing defects in thick composites, in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1989), pp. 1605–1612
137.
Zurück zum Zitat S.C. Wooh, I.M. Daniel, Enhancement techniques for ultrasonic nondestructive evaluation of composite materials (1990) S.C. Wooh, I.M. Daniel, Enhancement techniques for ultrasonic nondestructive evaluation of composite materials (1990)
138.
Zurück zum Zitat G. Mott, P.K.L.I. Aw, Correlation of mechanical and ultrasonic properties of Al–SiC metal-matrix composite. Metall. Trans. A 19(9), 2233–2246 (1988)CrossRef G. Mott, P.K.L.I. Aw, Correlation of mechanical and ultrasonic properties of Al–SiC metal-matrix composite. Metall. Trans. A 19(9), 2233–2246 (1988)CrossRef
139.
Zurück zum Zitat Z. Zhong, G. Lin, Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles. Int. J. Adv. Manuf. Technol. 27(11–12), 1077–1081 (2006)CrossRef Z. Zhong, G. Lin, Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles. Int. J. Adv. Manuf. Technol. 27(11–12), 1077–1081 (2006)CrossRef
140.
Zurück zum Zitat X. Lu, K.Y. Kim, W. Sachse, In situ determination of elastic stiffness constants of thick composites. Compos. Sci. Technol. 57(7), 753–762 (1997)CrossRef X. Lu, K.Y. Kim, W. Sachse, In situ determination of elastic stiffness constants of thick composites. Compos. Sci. Technol. 57(7), 753–762 (1997)CrossRef
141.
Zurück zum Zitat A.P. Mouritz, Ultrasonic and interlaminar properties of highly porous composites. J. Compos. Mater. 34(3), 218–239 (2000)CrossRef A.P. Mouritz, Ultrasonic and interlaminar properties of highly porous composites. J. Compos. Mater. 34(3), 218–239 (2000)CrossRef
142.
Zurück zum Zitat J. Serra, C. Bouvet, B. Castanié, C. Petiot, Scaling effect in notched composites: the Discrete Ply Model approach. Compos. Struct. 148, 127–143 (2016)CrossRef J. Serra, C. Bouvet, B. Castanié, C. Petiot, Scaling effect in notched composites: the Discrete Ply Model approach. Compos. Struct. 148, 127–143 (2016)CrossRef
143.
Zurück zum Zitat M.R. Wisnom, S.R. Hallett, C. Soutis, Scaling effects in notched composites. J. Compos. Mater. 44(2), 195–210 (2010)CrossRef M.R. Wisnom, S.R. Hallett, C. Soutis, Scaling effects in notched composites. J. Compos. Mater. 44(2), 195–210 (2010)CrossRef
144.
Zurück zum Zitat R.A. Smith, Use of 3D ultrasound data sets to map the localised properties of fibre-reinforced composites. Ph.D. Thesis, University of Nottingham Nottingham, UK, University of Nottingham (2010) R.A. Smith, Use of 3D ultrasound data sets to map the localised properties of fibre-reinforced composites. Ph.D. Thesis, University of Nottingham Nottingham, UK, University of Nottingham (2010)
145.
Zurück zum Zitat R.A. Smith, S. Mukhopadhyay, A. Lawrie, S.R. Hallett, Applications of ultrasonic NDT to aerospace composites, Presented at the Proceedings of the 5th International Symposium on Aerospace NDT, Singapore (2013) R.A. Smith, S. Mukhopadhyay, A. Lawrie, S.R. Hallett, Applications of ultrasonic NDT to aerospace composites, Presented at the Proceedings of the 5th International Symposium on Aerospace NDT, Singapore (2013)
149.
Zurück zum Zitat S.K. Chakrapani, V. Dayal, D. Barnard, D. Hsu, Investigation of discrete out-of-plane waviness in composite wind turbine blades using ultrasonic nondestructive evaluation, in Volume 5: High-Pressure Technology; Nondestructive Evaluation; Nuclear Engineering, Baltimore, Maryland, USA (January 2011), pp. 259–266. https://doi.org/10.1115/PVP2011-57652 S.K. Chakrapani, V. Dayal, D. Barnard, D. Hsu, Investigation of discrete out-of-plane waviness in composite wind turbine blades using ultrasonic nondestructive evaluation, in Volume 5: High-Pressure Technology; Nondestructive Evaluation; Nuclear Engineering, Baltimore, Maryland, USA (January 2011), pp. 259–266. https://​doi.​org/​10.​1115/​PVP2011-57652
150.
Zurück zum Zitat S.K. Chakrapani, V. Dayal, D.J. Barnard, A. Eldal, R. Krafka, Ultrasonic Rayleigh Wave Inspection of Waviness in Wind Turbine Blades: Experimental and Finite Element Method, Burlington, VT (2012), pp. 1911–1917. https://doi.org/10.1063/1.4716444 S.K. Chakrapani, V. Dayal, D.J. Barnard, A. Eldal, R. Krafka, Ultrasonic Rayleigh Wave Inspection of Waviness in Wind Turbine Blades: Experimental and Finite Element Method, Burlington, VT (2012), pp. 1911–1917. https://​doi.​org/​10.​1063/​1.​4716444
153.
Zurück zum Zitat K.J. Narayana, R.G. Burela, Proceedings, and undefined 2018, A Review of Recent Research on Multifunctional Composite Materials and Structures with Their Applications (Elsevier, 2018) K.J. Narayana, R.G. Burela, Proceedings, and undefined 2018, A Review of Recent Research on Multifunctional Composite Materials and Structures with Their Applications (Elsevier, 2018)
163.
Zurück zum Zitat W. Hillger, L. Bühling, D. Ilse, Air-coupled ultrasonic testing-method, system and practical applications, in 11th European Conference on Non-Destructive Testing (ECNDT 2014) (2014), pp. 6–10 W. Hillger, L. Bühling, D. Ilse, Air-coupled ultrasonic testing-method, system and practical applications, in 11th European Conference on Non-Destructive Testing (ECNDT 2014) (2014), pp. 6–10
171.
Zurück zum Zitat H. Li, Z. Zhou, Detection and characterization of debonding defects in aeronautical honeycomb sandwich composites using noncontact air-coupled ultrasonic testing technique. Appl. Sci. 9(2), Art. no. 2, January 2019. https://doi.org/10.3390/app9020283 H. Li, Z. Zhou, Detection and characterization of debonding defects in aeronautical honeycomb sandwich composites using noncontact air-coupled ultrasonic testing technique. Appl. Sci. 9(2), Art. no. 2, January 2019. https://​doi.​org/​10.​3390/​app9020283
173.
Zurück zum Zitat J. Krautkramer, H. Krautkramer, Ultrasonic testing of materials (1990) J. Krautkramer, H. Krautkramer, Ultrasonic testing of materials (1990)
174.
Zurück zum Zitat J. Neuenschwander, R. Furrer, A. Roemmeler, Application of air-coupled ultrasonics for the characterization of polymer and polymer-matrix composite samples. Polym. Test. 56, 379–386 (2016)CrossRef J. Neuenschwander, R. Furrer, A. Roemmeler, Application of air-coupled ultrasonics for the characterization of polymer and polymer-matrix composite samples. Polym. Test. 56, 379–386 (2016)CrossRef
175.
Zurück zum Zitat T. Stratoudaki, M. Clark, P.D. Wilcox, Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method. Opt. Exp. 24(19), 21921–21938 (2016)CrossRef T. Stratoudaki, M. Clark, P.D. Wilcox, Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method. Opt. Exp. 24(19), 21921–21938 (2016)CrossRef
176.
Zurück zum Zitat M. Morozov, C. Mineo, S.G. Pierce, P.I. Nicholson, I. Cooper, Computer-aided tool path generation for robotic Non-Destructive inspection (2013) M. Morozov, C. Mineo, S.G. Pierce, P.I. Nicholson, I. Cooper, Computer-aided tool path generation for robotic Non-Destructive inspection (2013)
177.
Zurück zum Zitat D.I.A. Lines, R.A. Smith, D. Edgar, J.M. Bending, L.D. Jones, Rapid, low-cost full-waveform mapping and analysis using ultrasonic phased arrays. Proc. NDT 43–48 (2003) D.I.A. Lines, R.A. Smith, D. Edgar, J.M. Bending, L.D. Jones, Rapid, low-cost full-waveform mapping and analysis using ultrasonic phased arrays. Proc. NDT 43–48 (2003)
179.
Zurück zum Zitat K.A. Tiwari, R. Raisutis, V. Samaitis, Hybrid signal processing technique to improve the defect estimation in ultrasonic non-destructive testing of composite structures. Sensors 17(12), Art. no. 12, December 2017. https://doi.org/10.3390/s17122858 K.A. Tiwari, R. Raisutis, V. Samaitis, Hybrid signal processing technique to improve the defect estimation in ultrasonic non-destructive testing of composite structures. Sensors 17(12), Art. no. 12, December 2017. https://​doi.​org/​10.​3390/​s17122858
186.
Zurück zum Zitat D.P. Almond, S.L. Angioni, S.G. Pickering, A case for NDT expert systems based on the development of the Thermographic NDE advisory and guidance system. Insight-Non-Destr. Test. Cond. Monit. 59(9), 473–478 (2017) D.P. Almond, S.L. Angioni, S.G. Pickering, A case for NDT expert systems based on the development of the Thermographic NDE advisory and guidance system. Insight-Non-Destr. Test. Cond. Monit. 59(9), 473–478 (2017)
189.
Zurück zum Zitat C. Udell, I. Tsalicoglou, R. Mennicke, The Future of Ultrasonic NDT with IoT (2018), pp. 1–8 C. Udell, I. Tsalicoglou, R. Mennicke, The Future of Ultrasonic NDT with IoT (2018), pp. 1–8
199.
Zurück zum Zitat P.M. Shankar, P. Karpur, V.L. Newhouse, J.L. Rose, Split-spectrum processing: analysis of polarity threshold algorithm for improvement of signal-to-noise ratio and detectability in ultrasonic signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(1), 101–108 (1989). https://doi.org/10.1109/58.16976CrossRef P.M. Shankar, P. Karpur, V.L. Newhouse, J.L. Rose, Split-spectrum processing: analysis of polarity threshold algorithm for improvement of signal-to-noise ratio and detectability in ultrasonic signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(1), 101–108 (1989). https://​doi.​org/​10.​1109/​58.​16976CrossRef
201.
Zurück zum Zitat N.E. Huang, Hilbert-Huang Transform and Its Applications, vol. 16 (World Scientific, 2014) N.E. Huang, Hilbert-Huang Transform and Its Applications, vol. 16 (World Scientific, 2014)
207.
Zurück zum Zitat A. Chabot, N. Laroche, E. Carcreff, M. Rauch, J.-Y. Hascoët, Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing. J. Intell. Manuf. 1–11 (2019) A. Chabot, N. Laroche, E. Carcreff, M. Rauch, J.-Y. Hascoët, Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing. J. Intell. Manuf. 1–11 (2019)
209.
Zurück zum Zitat E. Cuevas, S. Hernandez, E. Cabellos, Robot-based solutions for NDT inspections: integration of laser ultrasonics and air coupled ultrasounds for aeronautical components, in 25th ASNT Research Symposium (2016), pp. 39–46 E. Cuevas, S. Hernandez, E. Cabellos, Robot-based solutions for NDT inspections: integration of laser ultrasonics and air coupled ultrasounds for aeronautical components, in 25th ASNT Research Symposium (2016), pp. 39–46
211.
213.
Zurück zum Zitat C. Hellier, Handbook of Nondestructive Evaluation, 2nd edn. (McGraw-Hill, New York, 2013) C. Hellier, Handbook of Nondestructive Evaluation, 2nd edn. (McGraw-Hill, New York, 2013)
Metadaten
Titel
Ultrasonic Testing Techniques for Nondestructive Evaluation of Fiber-Reinforced Composite Structures
verfasst von
Shuncong Zhong
Walter Nsengiyumva
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-0848-4_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.