Skip to main content
Erschienen in: Cognitive Computation 3/2015

01.06.2015

Uncertain Graph Classification Based on Extreme Learning Machine

verfasst von: Donghong Han, Yachao Hu, Shuangshuang Ai, Guoren Wang

Erschienen in: Cognitive Computation | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of graph classification has attracted much attention in recent years. The existing work on graph classification has only dealt with precise and deterministic graph objects. However, the linkages between nodes in many real-world applications are inherently uncertain. In this paper, we focus on classification of graph objects with uncertainty. The method we propose can be divided into three steps: Firstly, we put forward a framework for classifying uncertain graph objects. Secondly, we extend the traditional algorithm used in the process of extracting frequent subgraphs to handle uncertain graph data. Thirdly, based on Extreme Learning Machine (ELM) with fast learning speed, a classifier is constructed. Extensive experiments on uncertain graph objects show that our method can produce better efficiency and effectiveness compared with other methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Wollmer M, Eyben F, Graves A, Schuller B, Rigoll G. Bidirectional LSTM networks for context-sensitive keyword detection in a cognitive virtual agent framework. Cogn Comput. 2010;2(3):180–90.CrossRef Wollmer M, Eyben F, Graves A, Schuller B, Rigoll G. Bidirectional LSTM networks for context-sensitive keyword detection in a cognitive virtual agent framework. Cogn Comput. 2010;2(3):180–90.CrossRef
3.
Zurück zum Zitat Mital P, Smith T, Hill R, Henderson J. Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn Comput. 2011;3(1):5–24.CrossRef Mital P, Smith T, Hill R, Henderson J. Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn Comput. 2011;3(1):5–24.CrossRef
4.
Zurück zum Zitat Cambria E, Hussain A. “Sentic computing: techniques, tools, and applications”, SpringerBriefs in cognitive computation. Dordrecht: Springer; 2012.CrossRef Cambria E, Hussain A. “Sentic computing: techniques, tools, and applications”, SpringerBriefs in cognitive computation. Dordrecht: Springer; 2012.CrossRef
5.
Zurück zum Zitat Wang Q, Cambria E, Liu C, Hussain A. Common sense knowledge for handwritten Chinese recognition. Cogn Comput. 2013;5(2):234–42.CrossRef Wang Q, Cambria E, Liu C, Hussain A. Common sense knowledge for handwritten Chinese recognition. Cogn Comput. 2013;5(2):234–42.CrossRef
6.
Zurück zum Zitat Xu Y, Guo R, Wang L. A twin multi-class classification support vector machine. Cogn Comput. 2013;5(4):580–8.CrossRef Xu Y, Guo R, Wang L. A twin multi-class classification support vector machine. Cogn Comput. 2013;5(4):580–8.CrossRef
7.
Zurück zum Zitat Tsivtsivadze E, Urban J, Geuvers H, Heskes T. Semantic graph kernels for automated reasoning. In: SDM, 2011. pp. 795–803. Tsivtsivadze E, Urban J, Geuvers H, Heskes T. Semantic graph kernels for automated reasoning. In: SDM, 2011. pp. 795–803.
8.
Zurück zum Zitat Tamas H, Thomas G, Stefan W. Cyclic pattern kernels for predictive graph mining. In: KDD, 2004. pp. 158–167. Tamas H, Thomas G, Stefan W. Cyclic pattern kernels for predictive graph mining. In: KDD, 2004. pp. 158–167.
9.
Zurück zum Zitat Thomas G, Peter F, Stefan W. On graph kernels: hardness results and efficient alternatives. In: COLT, 2003. pp. 129–143. Thomas G, Peter F, Stefan W. On graph kernels: hardness results and efficient alternatives. In: COLT, 2003. pp. 129–143.
10.
Zurück zum Zitat Jin N, Young C, Wang W. GAIA: graph classification using evolutionary computation. In: SIGMOD, 2010. pp. 879–890. Jin N, Young C, Wang W. GAIA: graph classification using evolutionary computation. In: SIGMOD, 2010. pp. 879–890.
11.
Zurück zum Zitat Thoma M, Cheng H, Gretton A, Han J, Kriegel H-P, Smola AJ, Song L, Yu PS, Yan X, K.M. Borgwardt: near-optimal supervised feature selection among frequent subgraphs. In: SDM, 2009. pp. 1075–1086. Thoma M, Cheng H, Gretton A, Han J, Kriegel H-P, Smola AJ, Song L, Yu PS, Yan X, K.M. Borgwardt: near-optimal supervised feature selection among frequent subgraphs. In: SDM, 2009. pp. 1075–1086.
12.
Zurück zum Zitat Jin N, Young C, Wang W. Graph classification based on pattern co-occurrence. In: CIKM, 2009. pp. 573–582. Jin N, Young C, Wang W. Graph classification based on pattern co-occurrence. In: CIKM, 2009. pp. 573–582.
13.
Zurück zum Zitat Kong X, Yu PS. Semi-supervised feature selection for graph classification. In: SIGKDD, 2010. pp. 793–802. Kong X, Yu PS. Semi-supervised feature selection for graph classification. In: SIGKDD, 2010. pp. 793–802.
14.
Zurück zum Zitat Bifet A, Holmes G, Pfahringer B, Gavald R. Mining frequent closed graphs on evolving data streams. In: SIGKDD, 2011. pp. 591–599. Bifet A, Holmes G, Pfahringer B, Gavald R. Mining frequent closed graphs on evolving data streams. In: SIGKDD, 2011. pp. 591–599.
15.
Zurück zum Zitat Yan X, Han J. gSpan: graph-based substructure pattern mining. ICDM, 2002. pp. 721–724. Yan X, Han J. gSpan: graph-based substructure pattern mining. ICDM, 2002. pp. 721–724.
16.
Zurück zum Zitat Parthasarathy S, Tatikonda S, Duygu U. A survey of graph mining techniques for biological datasets. In: Managing and mining graph data, 2010. pp. 547–580. Parthasarathy S, Tatikonda S, Duygu U. A survey of graph mining techniques for biological datasets. In: Managing and mining graph data, 2010. pp. 547–580.
17.
Zurück zum Zitat Jiang C, Coenen F, Zito M. A survey of frequent subgraph mining algorithms. In: Knowledge Engineering Review, 2013. pp. 75–105. Jiang C, Coenen F, Zito M. A survey of frequent subgraph mining algorithms. In: Knowledge Engineering Review, 2013. pp. 75–105.
18.
Zurück zum Zitat Thoma M, Cheng H, Gretton A, Han J, Kriegel HP, Smola A, Orgwardt KM. Discriminative frequent subgraph mining with optimality guarantees. Stat Anal Data Min. 2010;3(5):302–18.CrossRef Thoma M, Cheng H, Gretton A, Han J, Kriegel HP, Smola A, Orgwardt KM. Discriminative frequent subgraph mining with optimality guarantees. Stat Anal Data Min. 2010;3(5):302–18.CrossRef
19.
Zurück zum Zitat Shelokar P, Quirin A, Cordn O. MOSubdue: a Pareto dominance-based multiobjective subdue algorithm for frequent subgraph mining. Knowl Inf Syst. 2013;34(1):75–108.CrossRef Shelokar P, Quirin A, Cordn O. MOSubdue: a Pareto dominance-based multiobjective subdue algorithm for frequent subgraph mining. Knowl Inf Syst. 2013;34(1):75–108.CrossRef
20.
Zurück zum Zitat Huang G-B, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1):489–501.CrossRef Huang G-B, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1):489–501.CrossRef
22.
Zurück zum Zitat Wang X, Shao Q, Miao Q, Zhai J. Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing. 2013;102:3–9.CrossRef Wang X, Shao Q, Miao Q, Zhai J. Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing. 2013;102:3–9.CrossRef
23.
Zurück zum Zitat Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst. 2012;42(2):513–29. Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst. 2012;42(2):513–29.
24.
Zurück zum Zitat Miche Y, Sorjamaa A, Bas P, Simula Q, Jutten C, Lendasse A. OP-ELM: optimally pruned extreme learning machine. Neural Netw. 2010;21(1):158–62.CrossRef Miche Y, Sorjamaa A, Bas P, Simula Q, Jutten C, Lendasse A. OP-ELM: optimally pruned extreme learning machine. Neural Netw. 2010;21(1):158–62.CrossRef
25.
Zurück zum Zitat Mishra A, Goel A, Singh R, Chetty G, Singh L. A novel image watermarking scheme using extreme learning machine. In: Neural Networks (IJCNN), 2012. pp. 1–6. Mishra A, Goel A, Singh R, Chetty G, Singh L. A novel image watermarking scheme using extreme learning machine. In: Neural Networks (IJCNN), 2012. pp. 1–6.
26.
Zurück zum Zitat Huang G-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2(2):107–22.CrossRef Huang G-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2(2):107–22.CrossRef
27.
Zurück zum Zitat Zong W, Huang G-B. Learning to rank with extreme learning machine. Neural Process Lett. 2013;39(2):1–12. Zong W, Huang G-B. Learning to rank with extreme learning machine. Neural Process Lett. 2013;39(2):1–12.
28.
Zurück zum Zitat Zong W, Huang G-B, Chen Y. Weighted extreme learning machine for imbalance learning. Neurocomputing. 2013;101:229–42.CrossRef Zong W, Huang G-B, Chen Y. Weighted extreme learning machine for imbalance learning. Neurocomputing. 2013;101:229–42.CrossRef
29.
Zurück zum Zitat Fletcher R. Practical methods of optimization. John Wiley & Sons, 2013. p. 2. Fletcher R. Practical methods of optimization. John Wiley & Sons, 2013. p. 2.
30.
Zurück zum Zitat Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. In: Constrained optimization, 2001. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. In: Constrained optimization, 2001.
Metadaten
Titel
Uncertain Graph Classification Based on Extreme Learning Machine
verfasst von
Donghong Han
Yachao Hu
Shuangshuang Ai
Guoren Wang
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 3/2015
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-014-9295-7

Weitere Artikel der Ausgabe 3/2015

Cognitive Computation 3/2015 Zur Ausgabe