Skip to main content

2016 | OriginalPaper | Buchkapitel

76. Uncertainty

verfasst von : Kathy A. Notarianni, Gareth W. Parry

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To provide fire protection engineering decisions that are meaningful and defendable, the practitioner must understand and be able to characterize the impact of uncertainty on fire safety engineering calculations. This requirement is true for all fire safety engineering calculations, whether conducted to meet a performance-based code, to aid in the establishment of a prescriptive requirement; to compare a performance option to its prescriptive counterpart; or as part of a fire risk analysis used in managing a complex facility, such as a nuclear power plant. At present, however, there is no clear guidance for the treatment of uncertainty in the use of fire safety engineering calculations to support decision making. Development of such guidance will assist engineers and architects in the design process; assist code officials by increasing confidence in the acceptance of a performance calculation; aid researchers in prioritizing enhancements to both the physics and structure of fire models; and aid policy makers by incorporating scientific knowledge and technical predictive abilities in policy decisions. It is essential for the application of risk analysis in the regulation and management of complex facilities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A draft curtain is a barrier that extends a certain vertical distance down from the roof or ceiling. Draft curtains are installed to subdivide a large area with the intent of corralling the heat and smoke.
 
2
The term worst-case scenario is used in this chapter to represent both worst-case and reasonable worst-case scenarios as understood in the fire protection design field.
 
3
There are many sampling techniques. Monte Carlo is a well-accepted sampling method that has certain statistical advantages but may not be the best choice in all cases.
 
Literatur
1.
Zurück zum Zitat G.M. Morgan and M. Henrion, Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, New York (1990).CrossRef G.M. Morgan and M. Henrion, Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, New York (1990).CrossRef
2.
Zurück zum Zitat American National Standards Institute, U.S. Guide to the Expression of Uncertainty in Measurement, National Conference of Standards Laboratories, Boulder, CO (1997). American National Standards Institute, U.S. Guide to the Expression of Uncertainty in Measurement, National Conference of Standards Laboratories, Boulder, CO (1997).
3.
Zurück zum Zitat W.M. Pitts, E. Braun, R.D. Peacock, H.E. Mitler, E.L. Johnsson, P.A. Reneke, and L.G. Blevins, Temperature Uncertainties for Bare-Bead and Aspirated Thermocouples Measurements in Fire Environments, National Institute of Standards and Technology, Gaithersburg, MD (1998). W.M. Pitts, E. Braun, R.D. Peacock, H.E. Mitler, E.L. Johnsson, P.A. Reneke, and L.G. Blevins, Temperature Uncertainties for Bare-Bead and Aspirated Thermocouples Measurements in Fire Environments, National Institute of Standards and Technology, Gaithersburg, MD (1998).
4.
Zurück zum Zitat R.L.P. Custer and B.J. Meacham, Introduction to Performance-Based Fire Safety, Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA (1997). R.L.P. Custer and B.J. Meacham, Introduction to Performance-Based Fire Safety, Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA (1997).
5.
Zurück zum Zitat J.C. Helton and D.E. Burmeister (eds.), “Treatment of Aleatory and Epistemic Uncertainty,” special issue of Reliability Engineering and System Safety, 54, pp. 2–3 (1996). J.C. Helton and D.E. Burmeister (eds.), “Treatment of Aleatory and Epistemic Uncertainty,” special issue of Reliability Engineering and System Safety, 54, pp. 2–3 (1996).
6.
Zurück zum Zitat G.A. Apostolakis, “A Commentary on Model Uncertainty,” in Proceedings of Workshop 1 in Advanced Topics in Risk and Reliability Analysis, Model Uncertainty: Its Characterization and Quantification, NUREG/CP-0138 (1994). G.A. Apostolakis, “A Commentary on Model Uncertainty,” in Proceedings of Workshop 1 in Advanced Topics in Risk and Reliability Analysis, Model Uncertainty: Its Characterization and Quantification, NUREG/CP-0138 (1994).
7.
Zurück zum Zitat S. Kaplan, “On the Use of Data and Judgement in Probabilistic Risk and Safety Analysis,” Nuclear Engineering and Design, 93, pp. 123–134 (1986).CrossRef S. Kaplan, “On the Use of Data and Judgement in Probabilistic Risk and Safety Analysis,” Nuclear Engineering and Design, 93, pp. 123–134 (1986).CrossRef
8.
Zurück zum Zitat G.W. Parry, “The Characterization of Uncertainty in Probabilistic Risk Assessments of Complex Systems,” Reliability Engineering and Systems Safety, special issue on aleatory and epistemic uncertainty, 54, pp. 119–126 (1996). G.W. Parry, “The Characterization of Uncertainty in Probabilistic Risk Assessments of Complex Systems,” Reliability Engineering and Systems Safety, special issue on aleatory and epistemic uncertainty, 54, pp. 119–126 (1996).
9.
Zurück zum Zitat K.A. Notarianni and W.D. Davis, “The Use of Computer Fire Models to Predict Temperature and Smoke Movement in High-Bay Spaces,” NISTIR 5304, National Institute of Standards and Technology, Gaithersburg, MD (1993). K.A. Notarianni and W.D. Davis, “The Use of Computer Fire Models to Predict Temperature and Smoke Movement in High-Bay Spaces,” NISTIR 5304, National Institute of Standards and Technology, Gaithersburg, MD (1993).
10.
Zurück zum Zitat V. Brannigan and C. Smidts, “Performance Based Fire Safety Regulation under Intentional Uncertainty,” in Human Behaviour in Fire: First International Symposium (J. Shields, ed.), Fire Safety Engineering Research and Technology Centre, University of Ulster, Belfast, Northern Ireland, pp. 411–420 (1998). V. Brannigan and C. Smidts, “Performance Based Fire Safety Regulation under Intentional Uncertainty,” in Human Behaviour in Fire: First International Symposium (J. Shields, ed.), Fire Safety Engineering Research and Technology Centre, University of Ulster, Belfast, Northern Ireland, pp. 411–420 (1998).
11.
Zurück zum Zitat T.J. Shields, “Human Behaviour in Fire,” in First International Symposium on Human Behaviour in Fire (T.J. Shields, ed.), University of Ulster, Belfast, Northern Ireland (1998). T.J. Shields, “Human Behaviour in Fire,” in First International Symposium on Human Behaviour in Fire (T.J. Shields, ed.), University of Ulster, Belfast, Northern Ireland (1998).
12.
Zurück zum Zitat C. Starr, “Social Benefit vs. Technological Risk,” Science, 165, pp. 1232–1238 (1969).CrossRef C. Starr, “Social Benefit vs. Technological Risk,” Science, 165, pp. 1232–1238 (1969).CrossRef
13.
Zurück zum Zitat Society of Fire Protection Engineers, SFPE Engineering Guide to Performance-Based Fire Protection, 2nd ed., Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA (2007). Society of Fire Protection Engineers, SFPE Engineering Guide to Performance-Based Fire Protection, 2nd ed., Society of Fire Protection Engineers and National Fire Protection Association, Quincy, MA (2007).
14.
Zurück zum Zitat K.A. Notarianni and P.S. Fischbeck, “Dealing with Uncertainty to Improve the Regulatory System,” in Fire Safety Design in the Twenty-First Century (D. Lucht, ed.), Worcester, MA (1999). K.A. Notarianni and P.S. Fischbeck, “Dealing with Uncertainty to Improve the Regulatory System,” in Fire Safety Design in the Twenty-First Century (D. Lucht, ed.), Worcester, MA (1999).
15.
Zurück zum Zitat D.W. Stroup, “Using Performance-Based Design Techniques to Evaluate Fire Safety in Two Government Buildings,” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and Society of Fire Protection Engineers, Maui, HI, pp. 429–438 (1998). D.W. Stroup, “Using Performance-Based Design Techniques to Evaluate Fire Safety in Two Government Buildings,” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and Society of Fire Protection Engineers, Maui, HI, pp. 429–438 (1998).
16.
Zurück zum Zitat P.D. Sullivan, “Existing Building Performance-Based Fire Safety Design,” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and the Society of Fire Protection Engineers, Maui, HI, pp. 49–60 (1998). P.D. Sullivan, “Existing Building Performance-Based Fire Safety Design,” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and the Society of Fire Protection Engineers, Maui, HI, pp. 49–60 (1998).
17.
Zurück zum Zitat R.W. Portier, R.D. Peacock, and P.A. Reneke, FASTLite: Engineering Tools for Estimation Fire Growth and Smoke Transport, National Institute of Standards and Technology, Gaithersburg, MD (1996).CrossRef R.W. Portier, R.D. Peacock, and P.A. Reneke, FASTLite: Engineering Tools for Estimation Fire Growth and Smoke Transport, National Institute of Standards and Technology, Gaithersburg, MD (1996).CrossRef
18.
Zurück zum Zitat L. Benthorn and H. Frantzich, “Fire Alarm in a Public Building: How Do People Evaluate Information and Choose Evacuation Exit?” in Human Behaviour in Fire (J. Shields, ed.), Fire Safety Engineering Research and Technology Centre, University of Ulster, Belfast, Northern Ireland, pp. 213–222 (1998). L. Benthorn and H. Frantzich, “Fire Alarm in a Public Building: How Do People Evaluate Information and Choose Evacuation Exit?” in Human Behaviour in Fire (J. Shields, ed.), Fire Safety Engineering Research and Technology Centre, University of Ulster, Belfast, Northern Ireland, pp. 213–222 (1998).
19.
Zurück zum Zitat G. Proulx, “The Impact of Voice Communication Messages during a Residential Highrise Fire,” in Human Behaviour in Fire (J. Shields, ed.), Fire Safety Engineering Research and Technology Centre, University of Ulster, Belfast, Northern Ireland, pp. 265–274 (1998). G. Proulx, “The Impact of Voice Communication Messages during a Residential Highrise Fire,” in Human Behaviour in Fire (J. Shields, ed.), Fire Safety Engineering Research and Technology Centre, University of Ulster, Belfast, Northern Ireland, pp. 265–274 (1998).
20.
Zurück zum Zitat J. Fleming, “A Code Official’s View of Performance-Based Codes,” in Fire Risk and Hazard Assessment Symposium, National Fire Protection Research Foundation, San Francisco, pp. 93–117 (1996). J. Fleming, “A Code Official’s View of Performance-Based Codes,” in Fire Risk and Hazard Assessment Symposium, National Fire Protection Research Foundation, San Francisco, pp. 93–117 (1996).
21.
Zurück zum Zitat H. Frantzich, S.E. Magnusson, B. Holmquist, and J. Ryden, “Derivation of Partial Safety Factors for Fire Safety Evaluation Using the Reliability Index Beta Method,” in Fifth International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, pp. 667–678 (1997). H. Frantzich, S.E. Magnusson, B. Holmquist, and J. Ryden, “Derivation of Partial Safety Factors for Fire Safety Evaluation Using the Reliability Index Beta Method,” in Fifth International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, pp. 667–678 (1997).
22.
Zurück zum Zitat S.E. Magnusson, H. Frantzich, B. Karlsson, and S. Sardqvist, “Determination of Safety Factors in Design Based on Performance,” in Fourth International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, pp. 937–948 (1994). S.E. Magnusson, H. Frantzich, B. Karlsson, and S. Sardqvist, “Determination of Safety Factors in Design Based on Performance,” in Fourth International Symposium on Fire Safety Science, International Association for Fire Safety Science, Boston, pp. 937–948 (1994).
24.
Zurück zum Zitat B. Taylor and C. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, National Institute of Standards and Technology, Gaithersburg, MD (1994).CrossRef B. Taylor and C. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, National Institute of Standards and Technology, Gaithersburg, MD (1994).CrossRef
25.
Zurück zum Zitat K.A. Notarianni and P. Fischbeck, “A Methodology for the Quantitative Treatment of Variability and Uncertainty in Performance-Based Engineering Analysis,” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and Society of Fire Protection Engineers, Maui, HI, pp. 225–239 (1998). K.A. Notarianni and P. Fischbeck, “A Methodology for the Quantitative Treatment of Variability and Uncertainty in Performance-Based Engineering Analysis,” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and Society of Fire Protection Engineers, Maui, HI, pp. 225–239 (1998).
26.
Zurück zum Zitat W. Jones, G. Forney, R. Peacock, and P. Reneke, A Technical Reference for CFAST: An Engineering Tool for Estimating Fire and Smoke Transport, National Institute of Standards and Technology, Gaithersburg, MD (2000).CrossRef W. Jones, G. Forney, R. Peacock, and P. Reneke, A Technical Reference for CFAST: An Engineering Tool for Estimating Fire and Smoke Transport, National Institute of Standards and Technology, Gaithersburg, MD (2000).CrossRef
27.
Zurück zum Zitat R. Lantz, “Model Validity Defined and Applied to the Problem of Making Legitimate Predictions from Fire Protection Engineering Models,” in Third International Conference on Performance-Based Codes and Fire Safety Design Methods, Society of Fire Protection Engineers, Lund, Sweden (2000). R. Lantz, “Model Validity Defined and Applied to the Problem of Making Legitimate Predictions from Fire Protection Engineering Models,” in Third International Conference on Performance-Based Codes and Fire Safety Design Methods, Society of Fire Protection Engineers, Lund, Sweden (2000).
28.
Zurück zum Zitat N. Siu, E. Droguett, and A. Mosleh, “Model Uncertainty in Fire Risk Assessment,” in SFPE Symposium on Risk, Reliability, and Uncertainty in Fire Protection Engineering, Society of Fire Protection Engineers, Baltimore (1999). N. Siu, E. Droguett, and A. Mosleh, “Model Uncertainty in Fire Risk Assessment,” in SFPE Symposium on Risk, Reliability, and Uncertainty in Fire Protection Engineering, Society of Fire Protection Engineers, Baltimore (1999).
29.
Zurück zum Zitat R. Peacock, P. Reneke, W. Davis, and W. Jones, “Quantifying Fire Model Evaluation Using Functional Analysis,” Fire Safety Journal, 33, pp. 167–184 (1999)CrossRef R. Peacock, P. Reneke, W. Davis, and W. Jones, “Quantifying Fire Model Evaluation Using Functional Analysis,” Fire Safety Journal, 33, pp. 167–184 (1999)CrossRef
30.
Zurück zum Zitat D. Lucht, Strategies for Shaping the Future, Worcester Polytechnic Institute, Worcester, MA (1991). D. Lucht, Strategies for Shaping the Future, Worcester Polytechnic Institute, Worcester, MA (1991).
31.
Zurück zum Zitat W. Jones, Progress Report on Fire Modeling and Validation, National Institute of Standards and Technology, Gaithersburg, MD (1996).CrossRef W. Jones, Progress Report on Fire Modeling and Validation, National Institute of Standards and Technology, Gaithersburg, MD (1996).CrossRef
32.
Zurück zum Zitat J. Lundin, “On quantification of error and uncertainty in two-zone models used in fire safety design,” Journal of Fire Sciences, 23(4), pp. 329–354 (2005)MathSciNetCrossRef J. Lundin, “On quantification of error and uncertainty in two-zone models used in fire safety design,” Journal of Fire Sciences, 23(4), pp. 329–354 (2005)MathSciNetCrossRef
33.
Zurück zum Zitat J. Lundin, “Quantifying Error and Uncertainty in CFAST 2.0 Temperature Predictions,” Journal of Fire Sciences, 23(5), pp. 365–388 (2005)CrossRef J. Lundin, “Quantifying Error and Uncertainty in CFAST 2.0 Temperature Predictions,” Journal of Fire Sciences, 23(5), pp. 365–388 (2005)CrossRef
35.
Zurück zum Zitat ASTM, Standard Guide for Evaluating the Predictive Capability of Fire Models, American Society for Testing and Materials, Philadelphia (1992). ASTM, Standard Guide for Evaluating the Predictive Capability of Fire Models, American Society for Testing and Materials, Philadelphia (1992).
36.
Zurück zum Zitat R. Dickson, “Sensitivity Analysis of Ordinary Differential Equation Systems—A Direct Method,” Journal of Computational Physics, 21, pp. 123–143 (1976).MathSciNetCrossRef R. Dickson, “Sensitivity Analysis of Ordinary Differential Equation Systems—A Direct Method,” Journal of Computational Physics, 21, pp. 123–143 (1976).MathSciNetCrossRef
37.
Zurück zum Zitat R. Iman and J. Helton, “An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models,” Risk Analysis, 8(1), pp. 71–90 (1988).CrossRef R. Iman and J. Helton, “An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models,” Risk Analysis, 8(1), pp. 71–90 (1988).CrossRef
38.
Zurück zum Zitat R. Iman, “An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment,” Journal of Quality Technology, 13(3), pp. 174–183 (1981). R. Iman, “An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment,” Journal of Quality Technology, 13(3), pp. 174–183 (1981).
39.
Zurück zum Zitat R. Iman, J. Helton, and J. Campbell, “An Approach to Sensitivity Analysis of Computer Models: Part II—Ranking of Input Variables, Response Surface Validation, Distribution Effect and Technique Synopsis,” Journal of Quality Technology, 13(4), pp. 232–240 (1981). R. Iman, J. Helton, and J. Campbell, “An Approach to Sensitivity Analysis of Computer Models: Part II—Ranking of Input Variables, Response Surface Validation, Distribution Effect and Technique Synopsis,” Journal of Quality Technology, 13(4), pp. 232–240 (1981).
40.
Zurück zum Zitat D. Beller, “Computer Modeling Related to Fire and Decision Support Systems,” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and Society of Fire Protection Engineers, Maui, HI (1998). D. Beller, “Computer Modeling Related to Fire and Decision Support Systems,” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and Society of Fire Protection Engineers, Maui, HI (1998).
41.
Zurück zum Zitat J. C. Helton & F. J. Davis, “Illustration of sampling-based methods for uncertainty and sensitivity analysis,” Risk Analysis, Society for Risk Analysis, 22(3), pp. 591–622. (2002) J. C. Helton & F. J. Davis, “Illustration of sampling-based methods for uncertainty and sensitivity analysis,” Risk Analysis, Society for Risk Analysis, 22(3), pp. 591–622. (2002)
42.
Zurück zum Zitat J. C. Helton, “Quantification of margins and uncertainties: Conceptual and computational basis,” Reliability Engineering and System Safety, 96(9), pp. 976–1013. (2011)CrossRef J. C. Helton, “Quantification of margins and uncertainties: Conceptual and computational basis,” Reliability Engineering and System Safety, 96(9), pp. 976–1013. (2011)CrossRef
43.
Zurück zum Zitat V. R. Vasquez & W. B. Whiting, “Accounting for both random errors and systematic errors in uncertainty propagation analysis of computer models involving experimental measurements with Monte Carlo methods,” Risk Analysis, Society for Risk Analysis, 25(6), pp. 1669–1681. doi: 10.1111/j.1539-6924.2005.00704.x (2005)CrossRef V. R. Vasquez & W. B. Whiting, “Accounting for both random errors and systematic errors in uncertainty propagation analysis of computer models involving experimental measurements with Monte Carlo methods,” Risk Analysis, Society for Risk Analysis, 25(6), pp. 1669–1681. doi: 10.​1111/​j.​1539-6924.​2005.​00704.​x (2005)CrossRef
44.
Zurück zum Zitat K.A. Notarianni, “The Role of Uncertainty in Improving Fire Protection Regulation,” Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA (2000). K.A. Notarianni, “The Role of Uncertainty in Improving Fire Protection Regulation,” Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA (2000).
45.
Zurück zum Zitat R. R. Upadhyay & O. A. Ezekoye, “Treatment of design fire uncertainty using Quadrature Method of Moments,” Fire Safety Journal, 43(2), pp. 127–139. (2008)CrossRef R. R. Upadhyay & O. A. Ezekoye, “Treatment of design fire uncertainty using Quadrature Method of Moments,” Fire Safety Journal, 43(2), pp. 127–139. (2008)CrossRef
46.
Zurück zum Zitat C. Beyler, “Introduction to Fire Modeling,” in Fire Protection Handbook (A. Cote, ed.), National Fire Protection Association, Quincy, MA, pp. 10-82–10-85 (1991). C. Beyler, “Introduction to Fire Modeling,” in Fire Protection Handbook (A. Cote, ed.), National Fire Protection Association, Quincy, MA, pp. 10-82–10-85 (1991).
47.
Zurück zum Zitat H. Nelson, “Application of Fire Growth Models to Fire Protection Problems,” in Fire Protection Handbook (A. Cote, ed.), National Fire Protection Association, Quincy, MA, pp. 10-109–10-112 (1991). H. Nelson, “Application of Fire Growth Models to Fire Protection Problems,” in Fire Protection Handbook (A. Cote, ed.), National Fire Protection Association, Quincy, MA, pp. 10-109–10-112 (1991).
48.
Zurück zum Zitat A. Hald, Statistical Theory with Engineering Applications, John Wiley and Sons, New York (1952).MATH A. Hald, Statistical Theory with Engineering Applications, John Wiley and Sons, New York (1952).MATH
49.
Zurück zum Zitat M. Reiss, “Global Performance-Based Design: Is It the Solution?” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and Society of Fire Protection Engineers, Maui, HI, pp. 191–195 (1998). M. Reiss, “Global Performance-Based Design: Is It the Solution?” in Second International Conference on Performance-Based Codes and Fire Safety Design Methods, International Code Council and Society of Fire Protection Engineers, Maui, HI, pp. 191–195 (1998).
50.
Zurück zum Zitat House Committee on Science, Unlocking Our Future: Toward a New National Science Policy, U.S. Congress, Washington, DC (2007). House Committee on Science, Unlocking Our Future: Toward a New National Science Policy, U.S. Congress, Washington, DC (2007).
51.
Zurück zum Zitat NFPA, 550, Guide to the Fire Safety Concepts Tree, National Fire Protection Association, Quincy, MA (2007). NFPA, 550, Guide to the Fire Safety Concepts Tree, National Fire Protection Association, Quincy, MA (2007).
52.
Zurück zum Zitat R. T. Clemen, Making Hard Decisions: An Introduction to Decision Analysis, PWS-KENT Publishing Company, Belmont, CA (1990). R. T. Clemen, Making Hard Decisions: An Introduction to Decision Analysis, PWS-KENT Publishing Company, Belmont, CA (1990).
53.
Zurück zum Zitat M. Karter, U.S. Fire Experience by Region, 1989–1993, National Fire Protection Association, Quincy, MA (1995). M. Karter, U.S. Fire Experience by Region, 1989–1993, National Fire Protection Association, Quincy, MA (1995).
54.
Zurück zum Zitat J. Hall and B. Harwood, “The National Estimates Approach to U.S. Fire Statistics,” Fire Technology, 26(2). pp. 99–113 (1989).CrossRef J. Hall and B. Harwood, “The National Estimates Approach to U.S. Fire Statistics,” Fire Technology, 26(2). pp. 99–113 (1989).CrossRef
55.
Zurück zum Zitat J. Hall, Personal Communication, Uncertainty Bands (Jan. 1996). J. Hall, Personal Communication, Uncertainty Bands (Jan. 1996).
56.
Zurück zum Zitat W.K. Viscusi, “A Survey of Values of Risk to Life and Health,” in Fatal Tradeoffs: Public and Private Responses to Risk, Oxford University Press, New York, pp. 51–54 (1992). W.K. Viscusi, “A Survey of Values of Risk to Life and Health,” in Fatal Tradeoffs: Public and Private Responses to Risk, Oxford University Press, New York, pp. 51–54 (1992).
57.
Zurück zum Zitat T.O. Tengs et al., “Five-Hundred Life-Saving Interventions and Their Cost-Effectiveness,” Risk Analysis, 15, 3 (1995).CrossRef T.O. Tengs et al., “Five-Hundred Life-Saving Interventions and Their Cost-Effectiveness,” Risk Analysis, 15, 3 (1995).CrossRef
58.
Zurück zum Zitat “EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities,” EPRI 1011989/NUREG/CR-6850 (Sept. 2005). “EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities,” EPRI 1011989/NUREG/CR-6850 (Sept. 2005).
59.
Zurück zum Zitat USNRC, “An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis,” Regulatory Guide 1.174, Revision 1, (2002). USNRC, “An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis,” Regulatory Guide 1.174, Revision 1, (2002).
60.
Zurück zum Zitat G.A. Apostolakis, “Probability and Risk Assessment: The Subjectivist Viewpoint and Some Suggestions,” Nuclear Safety, 19(3), pp. 305–315 (1978). G.A. Apostolakis, “Probability and Risk Assessment: The Subjectivist Viewpoint and Some Suggestions,” Nuclear Safety, 19(3), pp. 305–315 (1978).
61.
Zurück zum Zitat G.W. Parry and P.W. Winter, “Characterization and Evaluation of Uncertainty in Probabilistic Risk Analysis,” Nuclear Safety, 22, p. 1 (1981). G.W. Parry and P.W. Winter, “Characterization and Evaluation of Uncertainty in Probabilistic Risk Analysis,” Nuclear Safety, 22, p. 1 (1981).
62.
Zurück zum Zitat USNRC, “Handbook of Parameter Estimation for Probabilistic Risk Assessment,” NUREG/CR-6823 (2003). USNRC, “Handbook of Parameter Estimation for Probabilistic Risk Assessment,” NUREG/CR-6823 (2003).
63.
Zurück zum Zitat M.P. Bohn, T.A. Wheeler, and G.W. Parry, “Approaches to Uncertainty Analysis in Probabilistic Risk Assessment,” NUREG/CR-4826 (1988). M.P. Bohn, T.A. Wheeler, and G.W. Parry, “Approaches to Uncertainty Analysis in Probabilistic Risk Assessment,” NUREG/CR-4826 (1988).
64.
Zurück zum Zitat R.L. Iman and J.C. Helton, “An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models,” Risk Analysis, 8(1), pp. 71–90 (1988).CrossRef R.L. Iman and J.C. Helton, “An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models,” Risk Analysis, 8(1), pp. 71–90 (1988).CrossRef
65.
Zurück zum Zitat G.W. Parry, “A Discussion on the Use of Judgment in Representing Uncertainty in PRAs,” Nuclear Engineering and Design, 93, pp. 135–144 (1986).CrossRef G.W. Parry, “A Discussion on the Use of Judgment in Representing Uncertainty in PRAs,” Nuclear Engineering and Design, 93, pp. 135–144 (1986).CrossRef
66.
Zurück zum Zitat M.E. Pate-Cornell, “Uncertainties in Risk Analyses: Six Levels of Treatment,” Reliability Engineering and System Safety, 54, pp. 95–112 (1996).CrossRef M.E. Pate-Cornell, “Uncertainties in Risk Analyses: Six Levels of Treatment,” Reliability Engineering and System Safety, 54, pp. 95–112 (1996).CrossRef
67.
Zurück zum Zitat M.C. Cheok, G.W. Parry, and R.R. Sherry, “Use of Importance Measures in Risk-Informed Regulatory Applications,” Reliability Engineering and System Safety, 60, pp. 213–226 (1998).CrossRef M.C. Cheok, G.W. Parry, and R.R. Sherry, “Use of Importance Measures in Risk-Informed Regulatory Applications,” Reliability Engineering and System Safety, 60, pp. 213–226 (1998).CrossRef
68.
Zurück zum Zitat M.A. Caruso, M.C. Cheok, M.A. Cunningham, G.M. Holahan, T.L. King, G.W. Parry, A.M. Ramey-Smith, M.P. Rubin, and A.C. Thadani, “An Approach for Using Risk Assessment in Risk-Informed Decisions on Plant-specific Changes to the Licensing Basis,” Reliability Engineering and System Safety, 63, pp. 231–242 (1999).CrossRef M.A. Caruso, M.C. Cheok, M.A. Cunningham, G.M. Holahan, T.L. King, G.W. Parry, A.M. Ramey-Smith, M.P. Rubin, and A.C. Thadani, “An Approach for Using Risk Assessment in Risk-Informed Decisions on Plant-specific Changes to the Licensing Basis,” Reliability Engineering and System Safety, 63, pp. 231–242 (1999).CrossRef
69.
Zurück zum Zitat G. Apostolakis and S. Kaplan, “Pitfalls in Risk Calculations,” Reliability Engineering, 2, 135–145 (1981).CrossRef G. Apostolakis and S. Kaplan, “Pitfalls in Risk Calculations,” Reliability Engineering, 2, 135–145 (1981).CrossRef
70.
Zurück zum Zitat L. A. Gritzo, P. E. Senseny, Y. Xin & R. Thomas, J. “The international FORUM of fire research directors: A position paper on verification and validation of numerical fire models,” Fire Safety Journal, 40(5), pp. 485–490. (2005) L. A. Gritzo, P. E. Senseny, Y. Xin & R. Thomas, J. “The international FORUM of fire research directors: A position paper on verification and validation of numerical fire models,” Fire Safety Journal, 40(5), pp. 485–490. (2005)
71.
Zurück zum Zitat A. S. f. T. Materials, Standard Guide for Evaluating the Predictive Capability of Fire Models, ASTM E1355. West Conshohocken, PA: ASTM International. (2012). A. S. f. T. Materials, Standard Guide for Evaluating the Predictive Capability of Fire Models, ASTM E1355. West Conshohocken, PA: ASTM International. (2012).
72.
Zurück zum Zitat M. Hurley & A. Munguia, “Analysis of Prediction Capability of FDS for Response of Thermal Detectors,” Journal of Fire Protection Engineering, 20(2). pp. 77–99 (2010).CrossRef M. Hurley & A. Munguia, “Analysis of Prediction Capability of FDS for Response of Thermal Detectors,” Journal of Fire Protection Engineering, 20(2). pp. 77–99 (2010).CrossRef
73.
Zurück zum Zitat W. D. Davis, “Comparison of Algorithms to Calculate Plume Centerline Temperature and Ceiling Jet Temperature with Experiments,” Journal of Fire Protection Engineering, 12(1), pp. 9–29. (2002)CrossRef W. D. Davis, “Comparison of Algorithms to Calculate Plume Centerline Temperature and Ceiling Jet Temperature with Experiments,” Journal of Fire Protection Engineering, 12(1), pp. 9–29. (2002)CrossRef
74.
Zurück zum Zitat Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications. Volume 5. Consolidated Fire Growth and Smoke Transport Model (CFAST). Peacock, R. D.; Reneke, P. A, NUREG-1824; EPRI 1011999; Volume 5; 206 p. May 2007. Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications. Volume 5. Consolidated Fire Growth and Smoke Transport Model (CFAST). Peacock, R. D.; Reneke, P. A, NUREG-1824; EPRI 1011999; Volume 5; 206 p. May 2007.
75.
Zurück zum Zitat M. Hurley, “ASET-B: Comparison of Model Predictions with Full-Scale Test Data,” Journal of Fire Protection Engineering, 13(1), pp. 37–65. (2003)CrossRef M. Hurley, “ASET-B: Comparison of Model Predictions with Full-Scale Test Data,” Journal of Fire Protection Engineering, 13(1), pp. 37–65. (2003)CrossRef
76.
Zurück zum Zitat Kong, et al., “Uncertainty and sensitivity analyses of heat fire detector model based on Monte Carlo simulation,” Journal of Fire Sciences. (2011) Kong, et al., “Uncertainty and sensitivity analyses of heat fire detector model based on Monte Carlo simulation,” Journal of Fire Sciences. (2011)
77.
Zurück zum Zitat F. Joglar, F. Mowrer & M. Modarres, “A Probabilistic Model for Fire Detection with Applications,” Fire Technology, 41(3), pp. 151–172. (2005)CrossRef F. Joglar, F. Mowrer & M. Modarres, “A Probabilistic Model for Fire Detection with Applications,” Fire Technology, 41(3), pp. 151–172. (2005)CrossRef
78.
Zurück zum Zitat “Evaluation of Smoke Detector Response Estimation Methods: Optical Density, Temperature Rise, and Velocity at Alarm,” Journal of Fire Protection Engineering, 16(4), pp. 251–268. (2006) “Evaluation of Smoke Detector Response Estimation Methods: Optical Density, Temperature Rise, and Velocity at Alarm,” Journal of Fire Protection Engineering, 16(4), pp. 251–268. (2006)
80.
Zurück zum Zitat B. J. Meacham, “Investigation of uncertainty in egress models and data,” Paper presented at the Third International Symposium on Human Behavior in Fire, Belfast, United Kingdom (2004) B. J. Meacham, “Investigation of uncertainty in egress models and data,” Paper presented at the Third International Symposium on Human Behavior in Fire, Belfast, United Kingdom (2004)
81.
Zurück zum Zitat Xie et al., “The effect of uncertain parameters on evacuation time in commercial buildings,” Journal of Fire Sciences, 30(1), pp. 55–67. (2012)CrossRef Xie et al., “The effect of uncertain parameters on evacuation time in commercial buildings,” Journal of Fire Sciences, 30(1), pp. 55–67. (2012)CrossRef
82.
Zurück zum Zitat L. Zhao & N. A. Dembsey, “Measurement uncertainty analysis for calorimetry apparatuses,” Fire and Materials, 32(1), pp. 1–26. doi: 10.1002/fam.947 (2008) L. Zhao & N. A. Dembsey, “Measurement uncertainty analysis for calorimetry apparatuses,” Fire and Materials, 32(1), pp. 1–26. doi: 10.​1002/​fam.​947 (2008)
83.
Zurück zum Zitat R. A. Bryant, & G.E. Mulholland, “A guide to characterizing heat release rate measurement uncertainty for full‐scale fire tests,” Fire and Materials, 32(3), pp. 121–139. doi: 10.1002/fam.959 (2008)CrossRef R. A. Bryant, & G.E. Mulholland, “A guide to characterizing heat release rate measurement uncertainty for full‐scale fire tests,” Fire and Materials, 32(3), pp. 121–139. doi: 10.​1002/​fam.​959 (2008)CrossRef
84.
Zurück zum Zitat M. W. Pitts, E. Braun, R. D. Peacock, H. E. Mitler, E. L. Johnson, P. A. Reneke & L. G. Blevins, Temperature Incertainties for Bare-bead and Aspirated Thermocouple Measurements in Fire Environments, ASTM Special Technical Publication, 1427, pp. 3–15 (2003) M. W. Pitts, E. Braun, R. D. Peacock, H. E. Mitler, E. L. Johnson, P. A. Reneke & L. G. Blevins, Temperature Incertainties for Bare-bead and Aspirated Thermocouple Measurements in Fire Environments, ASTM Special Technical Publication, 1427, pp. 3–15 (2003)
85.
Zurück zum Zitat D. Madrzykowski & C. Fleischmann, “Fire Pattern Repeatability: A Study in Uncertainty,” Journal of Testing and Evaluation, 40(1) (2012) D. Madrzykowski & C. Fleischmann, “Fire Pattern Repeatability: A Study in Uncertainty,” Journal of Testing and Evaluation, 40(1) (2012)
86.
Zurück zum Zitat J. R. Hall, & A. D. Library, “Uncertainty in fire standards and what to do about it” (Vol. STP1541). West Conshohocken, PA: ASTM International (2012) J. R. Hall, & A. D. Library, “Uncertainty in fire standards and what to do about it” (Vol. STP1541). West Conshohocken, PA: ASTM International (2012)
87.
Zurück zum Zitat J. O. Trevino & R. Curkeet, “Measurement Uncertainty in Fire Tests-A Fire Laboratory Point of View,” Journal of testing and Evaluation, 39(6), pp. 1040–1048. (2011)CrossRef J. O. Trevino & R. Curkeet, “Measurement Uncertainty in Fire Tests-A Fire Laboratory Point of View,” Journal of testing and Evaluation, 39(6), pp. 1040–1048. (2011)CrossRef
88.
Zurück zum Zitat J. Resing et al., “Measurement Uncertainty and Statistical Process Control for the Steiner Tunnel,” Journal of Testing and Evaluation, 39(6) (2011) J. Resing et al., “Measurement Uncertainty and Statistical Process Control for the Steiner Tunnel,” Journal of Testing and Evaluation, 39(6) (2011)
89.
Zurück zum Zitat K. Frank, “Uncertainty in Estimating the Fire Control Effectiveness of Sprinklers from New Zealand Fire Incident Reports,” Fire Technology, pp. 1–22 (2012) K. Frank, “Uncertainty in Estimating the Fire Control Effectiveness of Sprinklers from New Zealand Fire Incident Reports,” Fire Technology, pp. 1–22 (2012)
90.
Zurück zum Zitat C. Chang & H. Huang, “A Water Requirements Estimation Model for Fire Suppression: A Study Based on Integrated Uncertainty Analysis,” Fire Technology, 41(1), pp. 5–24 (2005)CrossRef C. Chang & H. Huang, “A Water Requirements Estimation Model for Fire Suppression: A Study Based on Integrated Uncertainty Analysis,” Fire Technology, 41(1), pp. 5–24 (2005)CrossRef
Metadaten
Titel
Uncertainty
verfasst von
Kathy A. Notarianni
Gareth W. Parry
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_76