Skip to main content
Erschienen in: Designs, Codes and Cryptography 4/2024

16.11.2023

Unconditionally secure non-malleable secret sharing and circular external difference families

verfasst von: Shannon Veitch, Douglas R. Stinson

Erschienen in: Designs, Codes and Cryptography | Ausgabe 4/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Various notions of non-malleable secret sharing schemes have been considered. In this paper, we review the existing work on non-malleable secret sharing and suggest a novel game-based definition. We provide a new construction of an unconditionally secure non-malleable threshold scheme with respect to a specified relation. To do so, we introduce a new type of algebraic manipulation detection code and construct examples of new variations of external difference families, which are of independent combinatorial interest.
Fußnoten
1
This is an extended version of [23].
 
Literatur
1.
Zurück zum Zitat Aggarwal D., Damgård I., Nielsen J.B., Obremski M., Purwanto E., Ribeiro J., Simkin M.: Stronger leakage-resilient and non-malleable secret sharing schemes for general access structures. In: Advances in Cryptology—CRYPTO 2019. Lect. Notes Comput. Sci., vol. 11693, pp. 510–539 (2019). Aggarwal D., Damgård I., Nielsen J.B., Obremski M., Purwanto E., Ribeiro J., Simkin M.: Stronger leakage-resilient and non-malleable secret sharing schemes for general access structures. In: Advances in Cryptology—CRYPTO 2019. Lect. Notes Comput. Sci., vol. 11693, pp. 510–539 (2019).
2.
Zurück zum Zitat Albab K.D., Issa R., Varia M., Graffi K.: Batched differentially private information retrieval. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 3327–3344 (2022). Albab K.D., Issa R., Varia M., Graffi K.: Batched differentially private information retrieval. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 3327–3344 (2022).
3.
Zurück zum Zitat Badrinarayanan S., Srinivasan A.: Revisiting non-malleable secret sharing. In: Advances in Cryptology—EUROCRYPT 2019. Lect. Notes Comput. Sci., vol. 11476, pp. 593–622 (2019). Badrinarayanan S., Srinivasan A.: Revisiting non-malleable secret sharing. In: Advances in Cryptology—EUROCRYPT 2019. Lect. Notes Comput. Sci., vol. 11476, pp. 593–622 (2019).
4.
Zurück zum Zitat Bentov I., Kumaresan R.: How to use bitcoin to design fair protocols. In: Advances in Cryptology—CRYPTO 2014. Lect. Notes Comput. Sci., vol. 8617, pp. 421–439 (2014). Bentov I., Kumaresan R.: How to use bitcoin to design fair protocols. In: Advances in Cryptology—CRYPTO 2014. Lect. Notes Comput. Sci., vol. 8617, pp. 421–439 (2014).
5.
Zurück zum Zitat Blakley G. R.: Safeguarding cryptographic keys. In: International Workshop on Managing Requirements Knowledge, pp. 313–318 (1979) Blakley G. R.: Safeguarding cryptographic keys. In: International Workshop on Managing Requirements Knowledge, pp. 313–318 (1979)
6.
Zurück zum Zitat Brian G., Faonio A., Venturi D.: Continuously non-malleable secret sharing for general access structures. In: TCC 2019: Theory of Cryptography. Lect. Notes Comput. Sci., vol. 11892, pp. 211–232 (2019). Brian G., Faonio A., Venturi D.: Continuously non-malleable secret sharing for general access structures. In: TCC 2019: Theory of Cryptography. Lect. Notes Comput. Sci., vol. 11892, pp. 211–232 (2019).
7.
Zurück zum Zitat Cohen S.D., Sharma H., Sharma R.: Primitive values of rational functions at primitive elements of a finite field. J. Number Theory 219, 237–246 (2021).MathSciNetCrossRef Cohen S.D., Sharma H., Sharma R.: Primitive values of rational functions at primitive elements of a finite field. J. Number Theory 219, 237–246 (2021).MathSciNetCrossRef
8.
Zurück zum Zitat Cramer R., Dodis Y., Fehr S., Padró C., Wichs D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Advances in Cryptology—EUROCRYPT 2008. Lect. Notes Comput. Sci., vol. 4965, pp. 471–488 (2008). Cramer R., Dodis Y., Fehr S., Padró C., Wichs D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Advances in Cryptology—EUROCRYPT 2008. Lect. Notes Comput. Sci., vol. 4965, pp. 471–488 (2008).
9.
Zurück zum Zitat Cramer R., Fehr S., Padró C.: Algebraic manipulation detection codes. Sci. China Math. 56, 1349–1358 (2013).MathSciNetCrossRef Cramer R., Fehr S., Padró C.: Algebraic manipulation detection codes. Sci. China Math. 56, 1349–1358 (2013).MathSciNetCrossRef
10.
Zurück zum Zitat Cramer R., Padró C., Xing C.: Optimal algebraic manipulation detection codes in the constant-error model. In: TCC 2015. Lecture Notes in Computer Science, vol. 9014, pp. 481–501 (2015). Cramer R., Padró C., Xing C.: Optimal algebraic manipulation detection codes in the constant-error model. In: TCC 2015. Lecture Notes in Computer Science, vol. 9014, pp. 481–501 (2015).
11.
Zurück zum Zitat Damgård I., Groth J.: Non-interactive and reusable non-malleable commitment schemes. In: STOC ’03: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, pp. 426–437 (2003). Damgård I., Groth J.: Non-interactive and reusable non-malleable commitment schemes. In: STOC ’03: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, pp. 426–437 (2003).
13.
Zurück zum Zitat Dwork C., Kenthapadi K., McSherry F., Mironov I., Naor M.: Our data, ourselves: privacy via distributed noise generation. In: Advances in Cryptology—EUROCRYPT 2006. Lect. Notes Comput. Sci., vol. 4004, pp. 486–503 (2006). Dwork C., Kenthapadi K., McSherry F., Mironov I., Naor M.: Our data, ourselves: privacy via distributed noise generation. In: Advances in Cryptology—EUROCRYPT 2006. Lect. Notes Comput. Sci., vol. 4004, pp. 486–503 (2006).
14.
Zurück zum Zitat Dziembowski S., Pietrzak K., Wichs D.: Non-malleable codes. In: Innovations in Computer Science, pp. 434–452 (2010). Dziembowski S., Pietrzak K., Wichs D.: Non-malleable codes. In: Innovations in Computer Science, pp. 434–452 (2010).
16.
Zurück zum Zitat Faonio A., Venturi D.: Non-malleable secret sharing in the computational setting: Adaptive tampering, noisy-leakage resilience, and improved rate. In: Advances in Cryptology - CRYPTO 2019. Lect. Notes Comput. Sci., vol. 11693, pp. 448–479 (2019). Faonio A., Venturi D.: Non-malleable secret sharing in the computational setting: Adaptive tampering, noisy-leakage resilience, and improved rate. In: Advances in Cryptology - CRYPTO 2019. Lect. Notes Comput. Sci., vol. 11693, pp. 448–479 (2019).
17.
18.
Zurück zum Zitat Gordon S.D.: On fairness in secure computation. PhD thesis, University of Maryland, College Park (2010). Gordon S.D.: On fairness in secure computation. PhD thesis, University of Maryland, College Park (2010).
19.
Zurück zum Zitat Gordon S.D., Ishai Y., Moran T., Ostrovsky R., Sahai A.: On complete primitives for fairness. In: TCC 2010: Theory of Cryptography. Lect. Notes Comput. Sci., vol. 5978, pp. 91–108 (2010). Gordon S.D., Ishai Y., Moran T., Ostrovsky R., Sahai A.: On complete primitives for fairness. In: TCC 2010: Theory of Cryptography. Lect. Notes Comput. Sci., vol. 5978, pp. 91–108 (2010).
20.
Zurück zum Zitat Goyal V., Kumar A.: Non-malleable secret sharing. In: STOC 2018: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 685–698 (2018). Goyal V., Kumar A.: Non-malleable secret sharing. In: STOC 2018: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 685–698 (2018).
21.
Zurück zum Zitat Goyal V., Kumar A.: Non-malleable secret sharing for general access structures. In: Advances in Cryptology - CRYPTO 2018 Lect. Notes Comput. Sci., vol. 5157, pp. 501–530 (2018). Goyal V., Kumar A.: Non-malleable secret sharing for general access structures. In: Advances in Cryptology - CRYPTO 2018 Lect. Notes Comput. Sci., vol. 5157, pp. 501–530 (2018).
22.
Zurück zum Zitat Huczynska S., Jefferson C., Nepšinská S.: Strong external difference families in abelian and non-abelian groups. Cryptogr. Commun. 13, 331–341 (2021).MathSciNetCrossRef Huczynska S., Jefferson C., Nepšinská S.: Strong external difference families in abelian and non-abelian groups. Cryptogr. Commun. 13, 331–341 (2021).MathSciNetCrossRef
23.
Zurück zum Zitat Ishai Y., Prabhakaran M., Sahai A.: Founding cryptography on oblivious transfer–efficiently. In: Advances in Cryptology - CRYPTO 2008. Lect. Notes Comput. Sci., vol. 5157, pp. 572–591 (2008). Ishai Y., Prabhakaran M., Sahai A.: Founding cryptography on oblivious transfer–efficiently. In: Advances in Cryptology - CRYPTO 2008. Lect. Notes Comput. Sci., vol. 5157, pp. 572–591 (2008).
25.
Zurück zum Zitat Kenthapadi K.: Models and algorithms for data privacy. PhD thesis, Stanford University (2006). Kenthapadi K.: Models and algorithms for data privacy. PhD thesis, Stanford University (2006).
26.
Zurück zum Zitat Paterson M.B., Stinson D.R.: Combinatorial characterizations of algebraic manipulation detection codes involving generalized difference families. Discret. Math. 339, 2891–2906 (2016).MathSciNetCrossRef Paterson M.B., Stinson D.R.: Combinatorial characterizations of algebraic manipulation detection codes involving generalized difference families. Discret. Math. 339, 2891–2906 (2016).MathSciNetCrossRef
27.
Zurück zum Zitat Rosulek M.: Universal composability from essentially any trusted setup. In: Advances in Cryptology—CRYPTO 2012. Lect. Notes Comput. Sci., vol. 7417, pp. 406–423 (2012). Rosulek M.: Universal composability from essentially any trusted setup. In: Advances in Cryptology—CRYPTO 2012. Lect. Notes Comput. Sci., vol. 7417, pp. 406–423 (2012).
Metadaten
Titel
Unconditionally secure non-malleable secret sharing and circular external difference families
verfasst von
Shannon Veitch
Douglas R. Stinson
Publikationsdatum
16.11.2023
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 4/2024
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-023-01322-5

Weitere Artikel der Ausgabe 4/2024

Designs, Codes and Cryptography 4/2024 Zur Ausgabe

Premium Partner