Skip to main content

2021 | OriginalPaper | Buchkapitel

Understanding Biomass Chemistry Using Multiscale Molecular Modeling Approach

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Catalytic upgradation of lignocellulosic biomass to produce value-added fuels and chemicals is technologically challenged due to the complexity of the biomass-derived substrates as well as the reaction media. In order to develop a potential biorefinery, fundamental understanding of the interaction of biomass-derived platform molecules with the catalyst surface and solvent and their behavior during a conversion process needs to be developed. In this regard, computational chemistry methods such as ab initio density functional theory (DFT), classical molecular dynamics (MD), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (CPMD), etc. have made a valuable contribution. This chapter briefly describes the role of these methods in understanding the reaction mechanism on the catalyst surface and the role of solvents in biomass conversion processes and pyrolysis chemistry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bardhan SK, Gupta S, Gorman ME, Haider MA (2015) Biorenewable chemicals: feedstocks, technologies and the conflict with food production. Renew Sust Energ Rev 51:506–520CrossRef Bardhan SK, Gupta S, Gorman ME, Haider MA (2015) Biorenewable chemicals: feedstocks, technologies and the conflict with food production. Renew Sust Energ Rev 51:506–520CrossRef
3.
Zurück zum Zitat Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493CrossRef Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493CrossRef
4.
Zurück zum Zitat Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3:2655–2668CrossRef Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3:2655–2668CrossRef
5.
Zurück zum Zitat Nie L et al (2014) Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts. J Mol Catal A Chem 388–389:47–55CrossRef Nie L et al (2014) Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts. J Mol Catal A Chem 388–389:47–55CrossRef
6.
Zurück zum Zitat Chia M et al (2013) Mechanistic insights into ring-opening and decarboxylation of 2-pyrones in liquid water and tetrahydrofuran. J Am Chem Soc 135:5699–5708CrossRef Chia M et al (2013) Mechanistic insights into ring-opening and decarboxylation of 2-pyrones in liquid water and tetrahydrofuran. J Am Chem Soc 135:5699–5708CrossRef
7.
Zurück zum Zitat Sitthisa S, An W, Resasco DE (2011) Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J Catal 284:90–101CrossRef Sitthisa S, An W, Resasco DE (2011) Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J Catal 284:90–101CrossRef
8.
Zurück zum Zitat Schwartz TJ, Neill BJO, Shanks BH, Dumesic JA (2014) Bridging the chemical and biological catalysis gap: challenges and outlooks for producing sustainable chemicals. ACS Catal 4:2060–2069CrossRef Schwartz TJ, Neill BJO, Shanks BH, Dumesic JA (2014) Bridging the chemical and biological catalysis gap: challenges and outlooks for producing sustainable chemicals. ACS Catal 4:2060–2069CrossRef
9.
Zurück zum Zitat Grajciar L et al (2018) Towards operando computational modeling in heterogeneous catalysis. Chem Soc Rev 47:8307–8348CrossRef Grajciar L et al (2018) Towards operando computational modeling in heterogeneous catalysis. Chem Soc Rev 47:8307–8348CrossRef
10.
Zurück zum Zitat Sholl DS, Steckel JA (2009) Density functional theory a practical introduction. Wiley, New YorkCrossRef Sholl DS, Steckel JA (2009) Density functional theory a practical introduction. Wiley, New YorkCrossRef
12.
Zurück zum Zitat Hassanali AA, Cuny J, Verdolino V, Parrinello M (2014) Aqueous solutions: state of the art in ab initio molecular dynamics. Philos Trans R Soc A 372:1–32CrossRef Hassanali AA, Cuny J, Verdolino V, Parrinello M (2014) Aqueous solutions: state of the art in ab initio molecular dynamics. Philos Trans R Soc A 372:1–32CrossRef
13.
Zurück zum Zitat Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRef Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRef
14.
Zurück zum Zitat Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843CrossRef Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843CrossRef
15.
Zurück zum Zitat Wyman CE et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966CrossRef Wyman CE et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966CrossRef
16.
Zurück zum Zitat Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15:2619–2635CrossRef Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15:2619–2635CrossRef
17.
Zurück zum Zitat Mishra DK et al (2017) MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chem 19:1619–1623CrossRef Mishra DK et al (2017) MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chem 19:1619–1623CrossRef
18.
Zurück zum Zitat James OO et al (2010) Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxymethylfurfural. Energy Environ Sci 3:1833–1850CrossRef James OO et al (2010) Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxymethylfurfural. Energy Environ Sci 3:1833–1850CrossRef
19.
Zurück zum Zitat Tang J et al (2017) Insights into the kinetics and reaction network of aluminum chloride-catalyzed conversion of glucose in NaCl-H2O/THF biphasic system. ACS Catal 7:256–266CrossRef Tang J et al (2017) Insights into the kinetics and reaction network of aluminum chloride-catalyzed conversion of glucose in NaCl-H2O/THF biphasic system. ACS Catal 7:256–266CrossRef
20.
Zurück zum Zitat Xin H et al (2017) Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid. RSC Adv 7:41546–41551CrossRef Xin H et al (2017) Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid. RSC Adv 7:41546–41551CrossRef
21.
Zurück zum Zitat Yang G, Pidko EA, Hensen EJM (2013) The mechanism of glucose isomerization to fructose over Sn-BEA zeolite : a periodic density functional theory study. ChemSusChem 6:1688–1696CrossRef Yang G, Pidko EA, Hensen EJM (2013) The mechanism of glucose isomerization to fructose over Sn-BEA zeolite : a periodic density functional theory study. ChemSusChem 6:1688–1696CrossRef
22.
Zurück zum Zitat Gounder R-B, Davis ME (2013) Titanium-beta zeolites catalyze the stereospecific isomerization of D-glucose to L-sorbose via intramolecular C5−C1 hydride shift. ACS Catal 3:1469–1476CrossRef Gounder R-B, Davis ME (2013) Titanium-beta zeolites catalyze the stereospecific isomerization of D-glucose to L-sorbose via intramolecular C5−C1 hydride shift. ACS Catal 3:1469–1476CrossRef
23.
Zurück zum Zitat Li G, Pidko EA, Hensen EJM (2016) A periodic DFT study of glucose to fructose isomerization on tungstite (WO3·H2O): influence of group IV − VI dopants and cooperativity with hydroxyl groups. ACS Catal 6:4162–4169CrossRef Li G, Pidko EA, Hensen EJM (2016) A periodic DFT study of glucose to fructose isomerization on tungstite (WO3·H2O): influence of group IV − VI dopants and cooperativity with hydroxyl groups. ACS Catal 6:4162–4169CrossRef
24.
Zurück zum Zitat Yang G, Pidko EA, Hensen EJM (2012) Mechanism of Bronsted acid-catalyzed conversion of carbohydrates. J Catal 295:122–132CrossRef Yang G, Pidko EA, Hensen EJM (2012) Mechanism of Bronsted acid-catalyzed conversion of carbohydrates. J Catal 295:122–132CrossRef
25.
Zurück zum Zitat Delidovich I, Palkovits R (2014) Catalytic activity and stability of hydrophobic Mg-Al hydrotalcites in the continuous aqueous-phase isomerization of glucose into fructose. Cat Sci Technol 4:4322–4329CrossRef Delidovich I, Palkovits R (2014) Catalytic activity and stability of hydrophobic Mg-Al hydrotalcites in the continuous aqueous-phase isomerization of glucose into fructose. Cat Sci Technol 4:4322–4329CrossRef
26.
Zurück zum Zitat Delidovich I, Palkovits R (2015) Structure-performance correlations of Mg-Al hydrotalcite catalysts for the isomerization of glucose into fructose. J Catal 327:1–9CrossRef Delidovich I, Palkovits R (2015) Structure-performance correlations of Mg-Al hydrotalcite catalysts for the isomerization of glucose into fructose. J Catal 327:1–9CrossRef
27.
Zurück zum Zitat Zhang X et al (2019) Glucose aqueous isomerization catalyzed by basic ionic liquids. ACS Sustain Chem Eng 7:13247–13256CrossRef Zhang X et al (2019) Glucose aqueous isomerization catalyzed by basic ionic liquids. ACS Sustain Chem Eng 7:13247–13256CrossRef
28.
Zurück zum Zitat Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal 6:7621–7640CrossRef Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal 6:7621–7640CrossRef
29.
Zurück zum Zitat Kim SB et al (2011) Dehydration of D-xylose into furfural over H-zeolites. Korean J Chem Eng 28:710–716CrossRef Kim SB et al (2011) Dehydration of D-xylose into furfural over H-zeolites. Korean J Chem Eng 28:710–716CrossRef
30.
Zurück zum Zitat Bhaumik P, Dhepe PL (2014) Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural. Catal Today 251:66–72CrossRef Bhaumik P, Dhepe PL (2014) Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural. Catal Today 251:66–72CrossRef
31.
Zurück zum Zitat Lam E et al (2011) Carbocatalytic dehydration of xylose to furfural in water. Carbon N Y 50:1033–1043CrossRef Lam E et al (2011) Carbocatalytic dehydration of xylose to furfural in water. Carbon N Y 50:1033–1043CrossRef
32.
Zurück zum Zitat Larreategui A, Requies J, Güemez MB, Arias PL (2011) Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour Technol 102:7478–7485CrossRef Larreategui A, Requies J, Güemez MB, Arias PL (2011) Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour Technol 102:7478–7485CrossRef
33.
Zurück zum Zitat Choudhary V, Pinar AB, Sandler SI, Vlachos DG, Lobo RF (2011) Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal 1:1724–1728CrossRef Choudhary V, Pinar AB, Sandler SI, Vlachos DG, Lobo RF (2011) Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal 1:1724–1728CrossRef
34.
Zurück zum Zitat Wang M, Liu C, Li Q, Xu X (2015) Theoretical insight into the conversion of xylose to furfural in the gas phase and water. J Mol Model 21:296CrossRef Wang M, Liu C, Li Q, Xu X (2015) Theoretical insight into the conversion of xylose to furfural in the gas phase and water. J Mol Model 21:296CrossRef
35.
Zurück zum Zitat Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed Engl 46:7164–7183CrossRef Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed Engl 46:7164–7183CrossRef
36.
Zurück zum Zitat Chen J et al (2013) Immobilized Ru clusters in nanosized mesoporous zirconium silica for the aqueous hydrogenation of furan derivatives at room temperature. ChemCatChem 5:2822–2826CrossRef Chen J et al (2013) Immobilized Ru clusters in nanosized mesoporous zirconium silica for the aqueous hydrogenation of furan derivatives at room temperature. ChemCatChem 5:2822–2826CrossRef
37.
Zurück zum Zitat Chatterjee M, Ishizaka T, Kawanami H (2014) Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chem 16:4734–4739CrossRef Chatterjee M, Ishizaka T, Kawanami H (2014) Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chem 16:4734–4739CrossRef
38.
Zurück zum Zitat Cai H, Li C, Wang A, Zhang T (2014) Biomass into chemicals: one-pot production of furan-based diols from carbohydrates via tandem reactions. Catal Today 234:59–65CrossRef Cai H, Li C, Wang A, Zhang T (2014) Biomass into chemicals: one-pot production of furan-based diols from carbohydrates via tandem reactions. Catal Today 234:59–65CrossRef
39.
Zurück zum Zitat Wang Y, Zhao D, Rodr D, Len C (2019) Recent advances in catalytic hydrogenation of furfural. Catalysts 9:1–33CrossRef Wang Y, Zhao D, Rodr D, Len C (2019) Recent advances in catalytic hydrogenation of furfural. Catalysts 9:1–33CrossRef
40.
Zurück zum Zitat Yu L et al (2015) Robust and recyclable nonprecious bimetallic nanoparticles on carbon nanotubes for the hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural. ChemCatChem 7:1701–1707CrossRef Yu L et al (2015) Robust and recyclable nonprecious bimetallic nanoparticles on carbon nanotubes for the hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural. ChemCatChem 7:1701–1707CrossRef
41.
Zurück zum Zitat Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem Commun 49:7034–7036CrossRef Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem Commun 49:7034–7036CrossRef
42.
Zurück zum Zitat Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2011) Kinetics and mechanism of hydrogenation of furfural on Cu/ SiO2 catalysts. J Catal 277:1–13CrossRef Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2011) Kinetics and mechanism of hydrogenation of furfural on Cu/ SiO2 catalysts. J Catal 277:1–13CrossRef
43.
Zurück zum Zitat Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 823:1446–1450CrossRef Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 823:1446–1450CrossRef
44.
Zurück zum Zitat Tang X et al (2017) Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: key intermediates for sustainable chemicals, materials and fuels. Renew Sust Energ Rev 77:287–296CrossRef Tang X et al (2017) Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: key intermediates for sustainable chemicals, materials and fuels. Renew Sust Energ Rev 77:287–296CrossRef
45.
Zurück zum Zitat Vorotnikov V, Mpourmpakis G, Vlachos DG (2012) DFT study of furfural conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd(111). ACS Catal 2:2496–2504CrossRef Vorotnikov V, Mpourmpakis G, Vlachos DG (2012) DFT study of furfural conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd(111). ACS Catal 2:2496–2504CrossRef
46.
Zurück zum Zitat Pushkarev VV, Musselwhite N, An K, Alayoglu S, Somorjai GA (2012) High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles. Nano Lett 12:5196–5201CrossRef Pushkarev VV, Musselwhite N, An K, Alayoglu S, Somorjai GA (2012) High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles. Nano Lett 12:5196–5201CrossRef
47.
Zurück zum Zitat Porwal G et al (2019) Mechanistic insights into the pathways of phenol hydrogenation on Pd nanostructures. ACS Sustain Chem Eng 7:17126–17136CrossRef Porwal G et al (2019) Mechanistic insights into the pathways of phenol hydrogenation on Pd nanostructures. ACS Sustain Chem Eng 7:17126–17136CrossRef
48.
Zurück zum Zitat Hausoul PJC, Negahdar L, Schute K, Palkovits R (2015) Unravelling the Ru-catalyzed hydrogenolysis of biomass- based polyols under neutral and acidic conditions. ChemSusChem 8:3323–3330CrossRef Hausoul PJC, Negahdar L, Schute K, Palkovits R (2015) Unravelling the Ru-catalyzed hydrogenolysis of biomass- based polyols under neutral and acidic conditions. ChemSusChem 8:3323–3330CrossRef
49.
Zurück zum Zitat Hočevar B, Grilc M, Huš M, Likozar B (2019) Mechanism, ab initio calculations and microkinetics of straight-chain alcohol, ether, ester, aldehyde and carboxylic acid hydrodeoxygenation over Ni-Mo catalyst. Chem Eng J 359:1339–1351CrossRef Hočevar B, Grilc M, Huš M, Likozar B (2019) Mechanism, ab initio calculations and microkinetics of straight-chain alcohol, ether, ester, aldehyde and carboxylic acid hydrodeoxygenation over Ni-Mo catalyst. Chem Eng J 359:1339–1351CrossRef
50.
Zurück zum Zitat Mikkola JP et al (2000) Deactivation kinetics of Mo-supported raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A Gen 196:143–155CrossRef Mikkola JP et al (2000) Deactivation kinetics of Mo-supported raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A Gen 196:143–155CrossRef
51.
Zurück zum Zitat Robinson AM, Hensley JE, Will Medlin J (2016) Bifunctional catalysts for upgrading of biomass-derived oxygenates: a review. ACS Catal 6:5026–5043CrossRef Robinson AM, Hensley JE, Will Medlin J (2016) Bifunctional catalysts for upgrading of biomass-derived oxygenates: a review. ACS Catal 6:5026–5043CrossRef
52.
Zurück zum Zitat Kim S et al (2019) Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem 21:3715–3743CrossRef Kim S et al (2019) Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem 21:3715–3743CrossRef
53.
Zurück zum Zitat Chia M et al (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium À rhenium catalysts. J Am Chem Soc 133:12675–12689CrossRef Chia M et al (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium À rhenium catalysts. J Am Chem Soc 133:12675–12689CrossRef
54.
Zurück zum Zitat Gupta S, Khan TS, Saha B, Haider MA (2019) Synergistic effect of Zn in a bimetallic PdZn catalyst: elucidating the role of undercoordinated sites in the hydrodeoxygenation reactions of biorenewable platforms. Ind Eng Chem Res 58:16153–16163CrossRef Gupta S, Khan TS, Saha B, Haider MA (2019) Synergistic effect of Zn in a bimetallic PdZn catalyst: elucidating the role of undercoordinated sites in the hydrodeoxygenation reactions of biorenewable platforms. Ind Eng Chem Res 58:16153–16163CrossRef
55.
Zurück zum Zitat Sun J et al (2013) Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal 306:47–57CrossRef Sun J et al (2013) Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal 306:47–57CrossRef
56.
Zurück zum Zitat Hong Y et al (2014) Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol. ACS Catal 4:3335–3345CrossRef Hong Y et al (2014) Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol. ACS Catal 4:3335–3345CrossRef
57.
Zurück zum Zitat Saha B, Bohn CM, Abu-Omar MM (2014) Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-Dimethylfuran. ChemSusChem 7:3095–3101CrossRef Saha B, Bohn CM, Abu-Omar MM (2014) Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-Dimethylfuran. ChemSusChem 7:3095–3101CrossRef
58.
Zurück zum Zitat Jalid F, Khan TS, Mir FQ, Haider MA (2017) Understanding trends in hydrodeoxygenation reactivity of metal and bimetallic alloy catalysts from ethanol reaction on stepped surface. J Catal 353:265–273CrossRef Jalid F, Khan TS, Mir FQ, Haider MA (2017) Understanding trends in hydrodeoxygenation reactivity of metal and bimetallic alloy catalysts from ethanol reaction on stepped surface. J Catal 353:265–273CrossRef
59.
Zurück zum Zitat Bond JQ, Martin Alonso D, West RM, Dumesic JA (2010) Y-valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water. Langmuir 26:16291–16298CrossRef Bond JQ, Martin Alonso D, West RM, Dumesic JA (2010) Y-valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water. Langmuir 26:16291–16298CrossRef
60.
Zurück zum Zitat Alonso DM, Bond JQ, Serrano-Ruiz JC, Dumesic JA (2010) Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes. Green Chem 12:992CrossRef Alonso DM, Bond JQ, Serrano-Ruiz JC, Dumesic JA (2010) Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes. Green Chem 12:992CrossRef
61.
Zurück zum Zitat Wang D, Hakim SH, Alonso DM, Dumesic JA (2013) A highly selective route to linear alpha olefins from biomass-derived lactones and unsaturated acids. Chem Commun 49:7040–7042CrossRef Wang D, Hakim SH, Alonso DM, Dumesic JA (2013) A highly selective route to linear alpha olefins from biomass-derived lactones and unsaturated acids. Chem Commun 49:7040–7042CrossRef
62.
Zurück zum Zitat Gupta S, Arora R, Sinha N, Alam MI, Haider MA (2016) Mechanistic insights into the ring-opening of biomass derived lactones. RSC Adv 6:12932–12942CrossRef Gupta S, Arora R, Sinha N, Alam MI, Haider MA (2016) Mechanistic insights into the ring-opening of biomass derived lactones. RSC Adv 6:12932–12942CrossRef
63.
Zurück zum Zitat Chia M, Schwartz TJ, Shanks BH, Dumesic JA (2012) Triacetic acid lactone as a potential biorenewable platform chemical. Green Chem 14:1850–1853CrossRef Chia M, Schwartz TJ, Shanks BH, Dumesic JA (2012) Triacetic acid lactone as a potential biorenewable platform chemical. Green Chem 14:1850–1853CrossRef
64.
Zurück zum Zitat Alam MI et al (2016) Development of 6-amyl-α-pyrone as a potential biomass-derived platform molecule. Green Chem 18:6399–6696CrossRef Alam MI et al (2016) Development of 6-amyl-α-pyrone as a potential biomass-derived platform molecule. Green Chem 18:6399–6696CrossRef
65.
Zurück zum Zitat Khan TS, Gupta S, Bandodkar P, Alam MI, Haider MA (2018) On the role of oxocarbenium ions formed in Brønsted acidic condition on γ-Al2O3 surface in the ring-opening of γ-valerolactone. Appl Catal A Gen 560:66–72CrossRef Khan TS, Gupta S, Bandodkar P, Alam MI, Haider MA (2018) On the role of oxocarbenium ions formed in Brønsted acidic condition on γ-Al2O3 surface in the ring-opening of γ-valerolactone. Appl Catal A Gen 560:66–72CrossRef
66.
Zurück zum Zitat Awakawa T et al (2013) 4-Hydroxy-3-methyl-6-(1-methyl-2-oxoalkyl)pyran-2-one synthesis by a type III polyketide synthase from Rhodospirillum centenum. Chembiochem 14:1006–1013CrossRef Awakawa T et al (2013) 4-Hydroxy-3-methyl-6-(1-methyl-2-oxoalkyl)pyran-2-one synthesis by a type III polyketide synthase from Rhodospirillum centenum. Chembiochem 14:1006–1013CrossRef
67.
Zurück zum Zitat Gupta S, Alam MI, Khan TS, Sinha N, Haider MA (2016) On the mechanism of retro-Diels-Alder reaction of partially saturated 2-pyrones to produce biorenewable chemicals. RSC Adv 6:60433–60445CrossRef Gupta S, Alam MI, Khan TS, Sinha N, Haider MA (2016) On the mechanism of retro-Diels-Alder reaction of partially saturated 2-pyrones to produce biorenewable chemicals. RSC Adv 6:60433–60445CrossRef
68.
Zurück zum Zitat Khan TS, Gupta S, Alam I, Haider MA (2016) Reactivity descriptor for the retro Diels – Alder reaction of partially saturated 2-pyrones: DFT study on substituents and solvent e ffects. RSC Adv 6:101697–101706CrossRef Khan TS, Gupta S, Alam I, Haider MA (2016) Reactivity descriptor for the retro Diels – Alder reaction of partially saturated 2-pyrones: DFT study on substituents and solvent e ffects. RSC Adv 6:101697–101706CrossRef
69.
Zurück zum Zitat Shrivastav G, Khan TS, Agarwal M, Haider MA (2018) A Car-Parrinello molecular dynamics simulation study of the retro Diels-Alder reaction for partially saturated 2-pyrones in water. J Phys Chem C 122:11599–11607CrossRef Shrivastav G, Khan TS, Agarwal M, Haider MA (2018) A Car-Parrinello molecular dynamics simulation study of the retro Diels-Alder reaction for partially saturated 2-pyrones in water. J Phys Chem C 122:11599–11607CrossRef
70.
Zurück zum Zitat He J et al (2017) Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chem 19:3642–3653CrossRef He J et al (2017) Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chem 19:3642–3653CrossRef
71.
Zurück zum Zitat Fowler FW, Katritzky AR, Rutherford RJD (1971) The correlation of solvent effects on physical and chemical properties. J Chem Soc B: 460–469 Fowler FW, Katritzky AR, Rutherford RJD (1971) The correlation of solvent effects on physical and chemical properties. J Chem Soc B: 460–469
72.
Zurück zum Zitat Mukherjee S, Vannice MA (2006) Solvent effects in liquid-phase reactions: I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects. J Catal 243:108–130CrossRef Mukherjee S, Vannice MA (2006) Solvent effects in liquid-phase reactions: I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects. J Catal 243:108–130CrossRef
73.
Zurück zum Zitat Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J Phys Chem 100:16098–16104CrossRef Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J Phys Chem 100:16098–16104CrossRef
74.
Zurück zum Zitat Neurock M (2003) Perspectives on the first principles elucidation and the design of active sites. J Catal 216:73–88CrossRef Neurock M (2003) Perspectives on the first principles elucidation and the design of active sites. J Catal 216:73–88CrossRef
75.
Zurück zum Zitat Walker TW et al (2018) Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy Environ Sci 11:617–628CrossRef Walker TW et al (2018) Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy Environ Sci 11:617–628CrossRef
76.
Zurück zum Zitat Chew AK et al (2020) Effect of mixed-solvent environments on the selectivity of acid-catalyzed dehydration reactions. ACS Catal 10:1679–1691CrossRef Chew AK et al (2020) Effect of mixed-solvent environments on the selectivity of acid-catalyzed dehydration reactions. ACS Catal 10:1679–1691CrossRef
77.
Zurück zum Zitat Overton JC, Zhu X, Mosier NS (2019) Molecular dynamics simulations and experimental verification to determine mechanism of cosolvents on increased 5-hydroxymethylfurfural yield from glucose. ACS Sustain Chem Eng 7:12997–13003CrossRef Overton JC, Zhu X, Mosier NS (2019) Molecular dynamics simulations and experimental verification to determine mechanism of cosolvents on increased 5-hydroxymethylfurfural yield from glucose. ACS Sustain Chem Eng 7:12997–13003CrossRef
78.
Zurück zum Zitat Varghese JJ, Mushrif SH (2019) Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. React Chem Eng 4:165–206CrossRef Varghese JJ, Mushrif SH (2019) Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. React Chem Eng 4:165–206CrossRef
79.
Zurück zum Zitat Patri AS et al (2019) A multifunctional cosolvent pair reveals molecular principles of biomass deconstruction. J Am Chem Soc 141:12545–12557CrossRef Patri AS et al (2019) A multifunctional cosolvent pair reveals molecular principles of biomass deconstruction. J Am Chem Soc 141:12545–12557CrossRef
80.
Zurück zum Zitat Mellmer MA et al (2019) Effects of chloride ions in acid-catalyzed biomass dehydration reactions in polar aprotic solvents. Nat Commun 10:1–10CrossRef Mellmer MA et al (2019) Effects of chloride ions in acid-catalyzed biomass dehydration reactions in polar aprotic solvents. Nat Commun 10:1–10CrossRef
81.
Zurück zum Zitat Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601CrossRef Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601CrossRef
82.
Zurück zum Zitat Agarwal V, Dauenhauer PJ, Huber GW, Auerbach SM (2012) Ab initio dynamics of cellulose pyrolysis: nascent decomposition pathways at 327 and 600 °C. J Am Chem Soc 134:14958–14972CrossRef Agarwal V, Dauenhauer PJ, Huber GW, Auerbach SM (2012) Ab initio dynamics of cellulose pyrolysis: nascent decomposition pathways at 327 and 600 °C. J Am Chem Soc 134:14958–14972CrossRef
83.
Zurück zum Zitat Mettler MS et al (2012) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424CrossRef Mettler MS et al (2012) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424CrossRef
84.
Zurück zum Zitat van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409CrossRef van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409CrossRef
85.
Zurück zum Zitat Russo MF, van Duin ACT (2011) Atomistic-scale simulations of chemical reactions: bridging from quantum chemistry to engineering. Nucl Instrum Methods Phys Res Sect B 269:1549–1554CrossRef Russo MF, van Duin ACT (2011) Atomistic-scale simulations of chemical reactions: bridging from quantum chemistry to engineering. Nucl Instrum Methods Phys Res Sect B 269:1549–1554CrossRef
86.
Zurück zum Zitat Zheng M et al (2016) Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel 177:130–141CrossRef Zheng M et al (2016) Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel 177:130–141CrossRef
87.
Zurück zum Zitat Zhang T, Li X, Guo L (2017) Initial reactivity of linkages and monomer rings in lignin pyrolysis revealed by ReaxFF molecular dynamics. Langmuir 33:11646–11657CrossRef Zhang T, Li X, Guo L (2017) Initial reactivity of linkages and monomer rings in lignin pyrolysis revealed by ReaxFF molecular dynamics. Langmuir 33:11646–11657CrossRef
Metadaten
Titel
Understanding Biomass Chemistry Using Multiscale Molecular Modeling Approach
verfasst von
Shelaka Gupta
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_10