Skip to main content

2021 | OriginalPaper | Buchkapitel

Levulinic Acid- and Furan-Based Multifunctional Materials: Opportunities and Challenges

verfasst von : Sreedhar Gundekari, Rajathsing Kalusulingam, Bhavesh Dakhara, Mariappan Mani, Joyee Mitra, Kannan Srinivasan

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, the world’s requirement for energy and chemicals is satisfied by tapping petroleum, coal, and natural gas resources. The continuously escalating energy demands for the betterment of life necessitate the search for alternate sources of energy. Sustainability, probably the “word of this century,” will be a prime force in stimulating scientists and technologists to look for alternate options in making fuels, chemicals and polymers that are irreplaceable in our lives. Renewable biomass, having useful carbon atoms, could be explored with significant potential to produce chemicals and materials that include polymers. The approach also has an intrinsic advantage of balancing CO2 emission, thereby aiding our environment. Researchers worldwide have made considerable advancements on biomass value addition for producing fuels, chemicals and materials. Broadly, biomass are categorized as lignocellulose and lipid-based wherein the former offers humungous scope of reaction chemistries that are deployable in a biorefinery akin to petro-refinery. Among them, levulinic acid (LA), 5-hydroxymethylfurfural (HMF) and 2,5-furandicarboxylic acid (FDCA) and their related products render multifunctional properties with diverse opportunities for applications. In the last decade, intense research has been carried out on these molecules. In this chapter, we shall discuss the background of these platform chemicals, multifarious catalytic approaches made and process tools deployed, in particular for γ-valerolactone, LA-based plasticizers, HMF and FDCA. Challenges on these approaches and possible strategies to overcome them will also be discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sasaki M, Adschiri T, Arai K (2003) Production of cellulose II from native cellulose by near- and supercritical water solubilization. J Agric Food Chem 51:5376–5381CrossRef Sasaki M, Adschiri T, Arai K (2003) Production of cellulose II from native cellulose by near- and supercritical water solubilization. J Agric Food Chem 51:5376–5381CrossRef
2.
Zurück zum Zitat Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRef Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRef
3.
Zurück zum Zitat Achyuthan KE, Achyuthan AM, Adams PD, Dirk SM, Harper JC, Simmons BA, Singh AK (2010) Supramolecular self-assembled chaos: polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15:8641–8688CrossRef Achyuthan KE, Achyuthan AM, Adams PD, Dirk SM, Harper JC, Simmons BA, Singh AK (2010) Supramolecular self-assembled chaos: polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15:8641–8688CrossRef
4.
Zurück zum Zitat Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116:1540–1599CrossRef Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116:1540–1599CrossRef
5.
Zurück zum Zitat Gauthier C, Chiche B, Finiels A, Geneste P (1989) Influence of acidity in friedel-crafts acylation catalyzed by zeolites. J Mol Catal 50:219–229CrossRef Gauthier C, Chiche B, Finiels A, Geneste P (1989) Influence of acidity in friedel-crafts acylation catalyzed by zeolites. J Mol Catal 50:219–229CrossRef
6.
Zurück zum Zitat Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5:198–214CrossRef Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5:198–214CrossRef
7.
Zurück zum Zitat Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem 47:9200–9211CrossRef Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem 47:9200–9211CrossRef
8.
Zurück zum Zitat Bevilaqua DB, Rambo MKD, Rizzetti TM, Cardoso AL, Martins AF (2013) Cleaner production: levulinic acid from rice husks. J Clean Prod 47:96–101CrossRef Bevilaqua DB, Rambo MKD, Rizzetti TM, Cardoso AL, Martins AF (2013) Cleaner production: levulinic acid from rice husks. J Clean Prod 47:96–101CrossRef
9.
Zurück zum Zitat Yang Z, Kang H, Guo Y, Zhuang G, Bai Z, Zhang H, Feng C, Dong Y (2013) Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind Crop Prod 46:205–209CrossRef Yang Z, Kang H, Guo Y, Zhuang G, Bai Z, Zhang H, Feng C, Dong Y (2013) Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind Crop Prod 46:205–209CrossRef
10.
Zurück zum Zitat Victor A, Pulidindi IN, Gedanken A (2014) Levulinic acid production from Cicer arietinum, cotton, Pinus radiata and sugarcane bagasse. RSC Adv 4:44706–44711CrossRef Victor A, Pulidindi IN, Gedanken A (2014) Levulinic acid production from Cicer arietinum, cotton, Pinus radiata and sugarcane bagasse. RSC Adv 4:44706–44711CrossRef
11.
Zurück zum Zitat Morone A, Apte M, Pandey RA (2015) Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sust Energ Rev 51:548–565CrossRef Morone A, Apte M, Pandey RA (2015) Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sust Energ Rev 51:548–565CrossRef
12.
Zurück zum Zitat Tabasso S, Montoneri E, Carnaroglio D, Caporaso M, Cravotto G (2014) Microwave-assisted flash conversion of non-edible polysaccharides and post-harvest tomato plant waste to levulinic acid. Green Chem 16:73–76CrossRef Tabasso S, Montoneri E, Carnaroglio D, Caporaso M, Cravotto G (2014) Microwave-assisted flash conversion of non-edible polysaccharides and post-harvest tomato plant waste to levulinic acid. Green Chem 16:73–76CrossRef
13.
Zurück zum Zitat Li J, Jiang Z, Hu L, Hu C (2014) Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride–sodium chloride system. ChemSusChem 7:2482–2488CrossRef Li J, Jiang Z, Hu L, Hu C (2014) Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride–sodium chloride system. ChemSusChem 7:2482–2488CrossRef
14.
Zurück zum Zitat Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15:5258–5272CrossRef Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15:5258–5272CrossRef
15.
Zurück zum Zitat Upare PP, Yoon J-W, Kim MY, Kang H-Y, Hwang DW, Hwang YK, Kung HH, Chang J-S (2013) Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem 15:2935–2943CrossRef Upare PP, Yoon J-W, Kim MY, Kang H-Y, Hwang DW, Hwang YK, Kung HH, Chang J-S (2013) Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem 15:2935–2943CrossRef
16.
Zurück zum Zitat Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Lett 51:2356–2358CrossRef Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Lett 51:2356–2358CrossRef
17.
Zurück zum Zitat Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner WC Jr, Dumesic JA, Huber GW (2013) Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. J Catal 304:123–134CrossRef Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner WC Jr, Dumesic JA, Huber GW (2013) Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. J Catal 304:123–134CrossRef
18.
Zurück zum Zitat Ramli NAS, Amin NAS (2015) Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Appl Catal B Environ 163:487–498CrossRef Ramli NAS, Amin NAS (2015) Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Appl Catal B Environ 163:487–498CrossRef
19.
Zurück zum Zitat Suacharoen S, Tungasmita DN (2013) Hydrothermolysis of carbohydrates to levulinic acid using metal supported on porous aluminosilicate. J Chem Technol Biotechnol 88:1538–1544CrossRef Suacharoen S, Tungasmita DN (2013) Hydrothermolysis of carbohydrates to levulinic acid using metal supported on porous aluminosilicate. J Chem Technol Biotechnol 88:1538–1544CrossRef
20.
Zurück zum Zitat Szabolcs A, Molnar M, Dibo G, Mika LT (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15:439–445CrossRef Szabolcs A, Molnar M, Dibo G, Mika LT (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15:439–445CrossRef
21.
Zurück zum Zitat Shen Y, Sun J-K, Yi Y-X, Wang B, Xu F, Sun RC (2015) One-pot synthesis of levulinic acid from cellulose in ionic liquids. Bioresour Technol 192:812–816CrossRef Shen Y, Sun J-K, Yi Y-X, Wang B, Xu F, Sun RC (2015) One-pot synthesis of levulinic acid from cellulose in ionic liquids. Bioresour Technol 192:812–816CrossRef
22.
Zurück zum Zitat Ren H, Girisuta B, Zhou Y, Liu L (2015) Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid. Carbohydr Polym 117:569–576CrossRef Ren H, Girisuta B, Zhou Y, Liu L (2015) Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid. Carbohydr Polym 117:569–576CrossRef
23.
Zurück zum Zitat Ren H, Zhou Y, Liu L (2013) Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour Technol 129:616–619CrossRef Ren H, Zhou Y, Liu L (2013) Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour Technol 129:616–619CrossRef
24.
Zurück zum Zitat Sun Z, Xue L, Wang S, Wang X, Shi J (2016) Single step conversion of cellulose to levulinic acid using temperature-responsive dodeca-aluminotungstic acid catalysts. Green Chem 18:742–752CrossRef Sun Z, Xue L, Wang S, Wang X, Shi J (2016) Single step conversion of cellulose to levulinic acid using temperature-responsive dodeca-aluminotungstic acid catalysts. Green Chem 18:742–752CrossRef
25.
Zurück zum Zitat Saravanamurugan S, Riisager A (2013) Zeolite catalyzed transformation of carbohydrates to alkyl levulinates. ChemCatChem 5:1754–1757CrossRef Saravanamurugan S, Riisager A (2013) Zeolite catalyzed transformation of carbohydrates to alkyl levulinates. ChemCatChem 5:1754–1757CrossRef
26.
Zurück zum Zitat Wang G, Zhang Z, Song L (2014) Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO3H-functionalized ionic liquids. Green Chem 16:1436–1443CrossRef Wang G, Zhang Z, Song L (2014) Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO3H-functionalized ionic liquids. Green Chem 16:1436–1443CrossRef
27.
Zurück zum Zitat Zhang Z, Dong K, Zhao ZK (2011) Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst. ChemSusChem 4:112–118CrossRef Zhang Z, Dong K, Zhao ZK (2011) Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst. ChemSusChem 4:112–118CrossRef
28.
Zurück zum Zitat Demma Carà P, Ciriminna R, Shiju NR, Rothenberg G, Pagliaro M (2014) Enhanced heterogeneous catalytic conversion of furfuryl alcohol into butyl levulinate. ChemSusChem 7:835–840CrossRef Demma Carà P, Ciriminna R, Shiju NR, Rothenberg G, Pagliaro M (2014) Enhanced heterogeneous catalytic conversion of furfuryl alcohol into butyl levulinate. ChemSusChem 7:835–840CrossRef
29.
Zurück zum Zitat Huang YB, Yang T, Zhou MC, Pan H, Fu Y (2016) Microwave-assisted alcoholysis of furfural alcohol into alkyl levulinates catalyzed by metal salts. Green Chem 18:1516–1523CrossRef Huang YB, Yang T, Zhou MC, Pan H, Fu Y (2016) Microwave-assisted alcoholysis of furfural alcohol into alkyl levulinates catalyzed by metal salts. Green Chem 18:1516–1523CrossRef
30.
Zurück zum Zitat Zhu SH, Cen YL, Guo J, Chai JC, Wang JG, Fan WB (2016) One-pot conversion of furfural to alkyl levulinate over bifunctional Au-H4SiW12O40/ZrO2 without external H2. Green Chem 18:5667–5675CrossRef Zhu SH, Cen YL, Guo J, Chai JC, Wang JG, Fan WB (2016) One-pot conversion of furfural to alkyl levulinate over bifunctional Au-H4SiW12O40/ZrO2 without external H2. Green Chem 18:5667–5675CrossRef
31.
Zurück zum Zitat Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Russ Chem Rev 68:73–84CrossRef Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Russ Chem Rev 68:73–84CrossRef
32.
Zurück zum Zitat Luo W, Bruijnincx PCA, Weckhuysen BM (2014) Selective, one-pot catalytic conversion of levulinic acid to pentanoic acid over Ru/H-ZSM5. J Catal 320:33–41CrossRef Luo W, Bruijnincx PCA, Weckhuysen BM (2014) Selective, one-pot catalytic conversion of levulinic acid to pentanoic acid over Ru/H-ZSM5. J Catal 320:33–41CrossRef
33.
Zurück zum Zitat Upare PP, Lee J-M, Hwang YK, Hwang DW, Lee J-H, Halligudi SB, Hwang J-S, Chang J-S (2011) Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 4:1749–1752CrossRef Upare PP, Lee J-M, Hwang YK, Hwang DW, Lee J-H, Halligudi SB, Hwang J-S, Chang J-S (2011) Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 4:1749–1752CrossRef
34.
Zurück zum Zitat Mizugaki T, Nagatsu Y, Togo K, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K (2015) Selective hydrogenation of levulinic acid to 1,4-pentanediol in water using a hydroxyapatite-supported Pt-Mo bimetallic catalyst. Green Chem 17:5136–5139CrossRef Mizugaki T, Nagatsu Y, Togo K, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K (2015) Selective hydrogenation of levulinic acid to 1,4-pentanediol in water using a hydroxyapatite-supported Pt-Mo bimetallic catalyst. Green Chem 17:5136–5139CrossRef
35.
Zurück zum Zitat Wright WRH, Palkovits R (2012) Development of heterogeneous catalysts for the conversion of levulinic acid to gamma-valerolactone. ChemSusChem 5:1657–1667CrossRef Wright WRH, Palkovits R (2012) Development of heterogeneous catalysts for the conversion of levulinic acid to gamma-valerolactone. ChemSusChem 5:1657–1667CrossRef
36.
Zurück zum Zitat Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483CrossRef Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483CrossRef
37.
Zurück zum Zitat Zhao Y, Fu Y, Guo QX (2012) Production of aromatic hydrocarbons through catalytic pyrolysis of gamma-valerolactone from biomass. Bioresour Technol 114:740–744CrossRef Zhao Y, Fu Y, Guo QX (2012) Production of aromatic hydrocarbons through catalytic pyrolysis of gamma-valerolactone from biomass. Bioresour Technol 114:740–744CrossRef
38.
Zurück zum Zitat Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114CrossRef Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114CrossRef
39.
Zurück zum Zitat Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513CrossRef Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513CrossRef
40.
Zurück zum Zitat Manzer LE (2004) Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl Catal A Gen 272:249–256CrossRef Manzer LE (2004) Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl Catal A Gen 272:249–256CrossRef
41.
Zurück zum Zitat Van de Vyver S, Roman-Leshkov Y (2013) Emerging catalytic processes for the production of adipic acid. Cat Sci Technol 3:1465–1479CrossRef Van de Vyver S, Roman-Leshkov Y (2013) Emerging catalytic processes for the production of adipic acid. Cat Sci Technol 3:1465–1479CrossRef
42.
Zurück zum Zitat Lange J-P, Vestering JZ, Haan RJ (2007) Towards ‘bio-based’ nylon: conversion of [gamma]-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem Commun 33:3488–3490CrossRef Lange J-P, Vestering JZ, Haan RJ (2007) Towards ‘bio-based’ nylon: conversion of [gamma]-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem Commun 33:3488–3490CrossRef
43.
Zurück zum Zitat Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ Sci 6:76–80CrossRef Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ Sci 6:76–80CrossRef
44.
45.
Zurück zum Zitat Duan Z-Q, Hu F (2012) Highly efficient synthesis of phosphatidylserine in the eco-friendly solvent γ-valerolactone. Green Chem 14:1581–1583CrossRef Duan Z-Q, Hu F (2012) Highly efficient synthesis of phosphatidylserine in the eco-friendly solvent γ-valerolactone. Green Chem 14:1581–1583CrossRef
46.
Zurück zum Zitat Stradi A, Molnar M, Ovari M, Dibo G, Richter FU, Mika LT (2013) Rhodium-catalyzed hydrogenation of olefins in γ-valerolactone-based ionic liquids. Green Chem 15:1857–1862CrossRef Stradi A, Molnar M, Ovari M, Dibo G, Richter FU, Mika LT (2013) Rhodium-catalyzed hydrogenation of olefins in γ-valerolactone-based ionic liquids. Green Chem 15:1857–1862CrossRef
47.
Zurück zum Zitat Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L (2015) A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner heck coupling reactions. Green Chem 17:365–372CrossRef Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L (2015) A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner heck coupling reactions. Green Chem 17:365–372CrossRef
48.
Zurück zum Zitat Strappaveccia G, Luciani L, Bartollini E, Marrocchi A, Pizzo F, Vaccaro L (2015) γ-Valerolactone as an alternative biomass-derived medium for the Sonogashira reaction. Green Chem 17:1071–1076CrossRef Strappaveccia G, Luciani L, Bartollini E, Marrocchi A, Pizzo F, Vaccaro L (2015) γ-Valerolactone as an alternative biomass-derived medium for the Sonogashira reaction. Green Chem 17:1071–1076CrossRef
49.
Zurück zum Zitat Pongrácz P, Bartal B, Kollár L, Mika LT (2017) Rhodium-catalyzed hydroformylation in γ-valerolactone as a biomass-derived solvent. J Organomet Chem 847:140–145CrossRef Pongrácz P, Bartal B, Kollár L, Mika LT (2017) Rhodium-catalyzed hydroformylation in γ-valerolactone as a biomass-derived solvent. J Organomet Chem 847:140–145CrossRef
50.
Zurück zum Zitat Fegyverneki D, Orha L, Láng G, Horváth IT (2010) Gamma-valerolactone-based solvents. Tetrahedron 66:1078–1081CrossRef Fegyverneki D, Orha L, Láng G, Horváth IT (2010) Gamma-valerolactone-based solvents. Tetrahedron 66:1078–1081CrossRef
51.
Zurück zum Zitat Gundekari S, Srinivasan K (2019) Screening of solvents, hydrogen source, and investigation of reaction mechanism for the hydrocyclisation of levulinic acid to γ-valerolactone using Ni/SiO2-Al2O3 catalyst. Catal Lett 149:215–227CrossRef Gundekari S, Srinivasan K (2019) Screening of solvents, hydrogen source, and investigation of reaction mechanism for the hydrocyclisation of levulinic acid to γ-valerolactone using Ni/SiO2-Al2O3 catalyst. Catal Lett 149:215–227CrossRef
52.
Zurück zum Zitat Osatiashtiani A, Lee AF, Wilson K (2017) Recent advances in the production of gamma-valerolactone from biomass-derived feedstocks via heterogeneous catalytic transfer hydrogenation. J Chem Technol Biotechnol 92:1125–1135CrossRef Osatiashtiani A, Lee AF, Wilson K (2017) Recent advances in the production of gamma-valerolactone from biomass-derived feedstocks via heterogeneous catalytic transfer hydrogenation. J Chem Technol Biotechnol 92:1125–1135CrossRef
53.
Zurück zum Zitat Liguori F, Moreno-Marrodan C, Barbaro P (2015) Environmentally friendly synthesis of gamma-valerolactone by direct catalytic conversion of renewable sources. ACS Catal 5:1882–1894CrossRef Liguori F, Moreno-Marrodan C, Barbaro P (2015) Environmentally friendly synthesis of gamma-valerolactone by direct catalytic conversion of renewable sources. ACS Catal 5:1882–1894CrossRef
54.
Zurück zum Zitat Tang X, Zeng X, Li Z, Hu L, Sun Y, Liu S, Lei T, Lin L (2014) Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew Sust Energ Rev 40:608–620CrossRef Tang X, Zeng X, Li Z, Hu L, Sun Y, Liu S, Lei T, Lin L (2014) Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew Sust Energ Rev 40:608–620CrossRef
55.
Zurück zum Zitat Dutta S, Yu IKM, Tsang DCW, Ng YH, Ok YS, Sherwood J, Clark JH (2019) Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: a critical review. Chem Eng J 372:992–1006CrossRef Dutta S, Yu IKM, Tsang DCW, Ng YH, Ok YS, Sherwood J, Clark JH (2019) Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: a critical review. Chem Eng J 372:992–1006CrossRef
56.
Zurück zum Zitat Xue ZM, Liu QL, Wang JF, Mu TC (2018) Valorization of levulinic acid over non-noble metal catalysts: challenges and opportunities. Green Chem 20:4391–4408CrossRef Xue ZM, Liu QL, Wang JF, Mu TC (2018) Valorization of levulinic acid over non-noble metal catalysts: challenges and opportunities. Green Chem 20:4391–4408CrossRef
57.
Zurück zum Zitat Yu ZH, Lu XB, Liu C, Han YW, Ji N (2019) Synthesis of gamma-valerolactone from different biomass-derived feedstocks: recent advances on reaction mechanisms and catalytic systems. Renew Sust Energ Rev 112:140–157CrossRef Yu ZH, Lu XB, Liu C, Han YW, Ji N (2019) Synthesis of gamma-valerolactone from different biomass-derived feedstocks: recent advances on reaction mechanisms and catalytic systems. Renew Sust Energ Rev 112:140–157CrossRef
58.
Zurück zum Zitat Yan K, Chen A (2013) Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst. Energy 58:357–363CrossRef Yan K, Chen A (2013) Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst. Energy 58:357–363CrossRef
59.
Zurück zum Zitat Yan K, Liao J, Wu X, Xie X (2013) A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. RSC Adv 3:3853–3856CrossRef Yan K, Liao J, Wu X, Xie X (2013) A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. RSC Adv 3:3853–3856CrossRef
60.
Zurück zum Zitat Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel 115:101–108CrossRef Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel 115:101–108CrossRef
61.
Zurück zum Zitat Long X, Sun P, Li Z, Lang R, Xia C, Li F (2015) Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone. Chin J Catal 36:1512–1518CrossRef Long X, Sun P, Li Z, Lang R, Xia C, Li F (2015) Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone. Chin J Catal 36:1512–1518CrossRef
62.
Zurück zum Zitat Zhang J, Chen J, Guo Y, Chen L (2015) Effective upgrade of Levulinic acid into γ-valerolactone over an inexpensive and magnetic catalyst derived from hydrotalcite precursor. ACS Sustain Chem Eng 3:1708–1714CrossRef Zhang J, Chen J, Guo Y, Chen L (2015) Effective upgrade of Levulinic acid into γ-valerolactone over an inexpensive and magnetic catalyst derived from hydrotalcite precursor. ACS Sustain Chem Eng 3:1708–1714CrossRef
63.
Zurück zum Zitat Gupta SSR, Kantam ML (2018) Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catal Today 309:189–194CrossRef Gupta SSR, Kantam ML (2018) Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catal Today 309:189–194CrossRef
64.
Zurück zum Zitat Li W, Fan GL, Yang L, Li F (2016) Highly efficient vapor-phase hydrogenation of biomass-derived Levulinic acid over structured nanowall-like nickel-based catalyst. ChemCatChem 8:2724–2733CrossRef Li W, Fan GL, Yang L, Li F (2016) Highly efficient vapor-phase hydrogenation of biomass-derived Levulinic acid over structured nanowall-like nickel-based catalyst. ChemCatChem 8:2724–2733CrossRef
65.
Zurück zum Zitat Hussain SK, Kumar VV, Pethan RN, Putra KB, Chary KVR (2018) Synthesis of γ-Valerolactone from Levulinic acid and formic acid over Mg-Al Hydrotalcite like compound. ChemistrySelect 3:6186–6194CrossRef Hussain SK, Kumar VV, Pethan RN, Putra KB, Chary KVR (2018) Synthesis of γ-Valerolactone from Levulinic acid and formic acid over Mg-Al Hydrotalcite like compound. ChemistrySelect 3:6186–6194CrossRef
66.
Zurück zum Zitat Jiang K, Sheng D, Zhang ZH, Fu J, Hou ZY, Liu XY (2016) Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al2O3 supported Ni catalyst. Catal Today 274:55–59CrossRef Jiang K, Sheng D, Zhang ZH, Fu J, Hou ZY, Liu XY (2016) Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al2O3 supported Ni catalyst. Catal Today 274:55–59CrossRef
67.
Zurück zum Zitat Gundekari S, Srinivasan K (2017) In situ generated Ni(0)@boehmite from NiAl-LDH: an efficient catalyst for selective hydrogenation of biomass derived levulinic acid to γ-valerolactone. Catal Commun 102:40–43CrossRef Gundekari S, Srinivasan K (2017) In situ generated Ni(0)@boehmite from NiAl-LDH: an efficient catalyst for selective hydrogenation of biomass derived levulinic acid to γ-valerolactone. Catal Commun 102:40–43CrossRef
68.
Zurück zum Zitat Ma MW, Liu H, Cao JJ, Hou P, Huang JH, Xu XL, Yue HJ, Tian G, Feng SH (2019) A highly efficient Cu/AlOOH catalyst obtained by in situ reduction: catalytic transfer hydrogenation of ML into γ-GVL. Mol Catal 467:52–60CrossRef Ma MW, Liu H, Cao JJ, Hou P, Huang JH, Xu XL, Yue HJ, Tian G, Feng SH (2019) A highly efficient Cu/AlOOH catalyst obtained by in situ reduction: catalytic transfer hydrogenation of ML into γ-GVL. Mol Catal 467:52–60CrossRef
69.
Zurück zum Zitat Gundeboina R, Gadasandula S, Velisoju VK, Gutta N, Kotha LR, Aytam HP (2019) Ni-Al-Ti hydrotalcite based catalyst for the selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone. Chemistryselect 4:202–210CrossRef Gundeboina R, Gadasandula S, Velisoju VK, Gutta N, Kotha LR, Aytam HP (2019) Ni-Al-Ti hydrotalcite based catalyst for the selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone. Chemistryselect 4:202–210CrossRef
70.
Zurück zum Zitat Liu M, Li S, Fan G, Yang L, Li F (2019) Hierarchical flower-like bimetallic NiCu catalysts for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone. Ind Eng Chem Res 58:10317–10327CrossRef Liu M, Li S, Fan G, Yang L, Li F (2019) Hierarchical flower-like bimetallic NiCu catalysts for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone. Ind Eng Chem Res 58:10317–10327CrossRef
71.
Zurück zum Zitat Swarna Jaya V, Sudhakar M, Naveen Kumar S, Venugopal A (2015) Selective hydrogenation of levulinic acid to γ-valerolactone over a Ru/Mg-LaO catalyst. RSC Adv 5:9044–9049CrossRef Swarna Jaya V, Sudhakar M, Naveen Kumar S, Venugopal A (2015) Selective hydrogenation of levulinic acid to γ-valerolactone over a Ru/Mg-LaO catalyst. RSC Adv 5:9044–9049CrossRef
72.
Zurück zum Zitat Bal R, Pendem C, Bordolol A, Konthala L, Narayan S, Manoj K, Saran S (2018) Process for the production of γ-Valerolactone. US patent 10,005,747 B2 Bal R, Pendem C, Bordolol A, Konthala L, Narayan S, Manoj K, Saran S (2018) Process for the production of γ-Valerolactone. US patent 10,005,747 B2
73.
Zurück zum Zitat Kannan Srinivasan SG (2019) Process for the preparation of γ-Valerolactone by catalytic hydrogenation of levulinic acid using Ru-based catalysts. US patent 10,221,149 B2 Kannan Srinivasan SG (2019) Process for the preparation of γ-Valerolactone by catalytic hydrogenation of levulinic acid using Ru-based catalysts. US patent 10,221,149 B2
74.
Zurück zum Zitat Mitta H, Seelam PK, Chary KVR, Mutyala S, Boddula R, Inamuddin AAM (2018) Efficient vapor-phase selective hydrogenolysis of bio-Levulinic acid to γ-valerolactone using Cu supported on hydrotalcite catalysts. Glob Challenges 2:1800028CrossRef Mitta H, Seelam PK, Chary KVR, Mutyala S, Boddula R, Inamuddin AAM (2018) Efficient vapor-phase selective hydrogenolysis of bio-Levulinic acid to γ-valerolactone using Cu supported on hydrotalcite catalysts. Glob Challenges 2:1800028CrossRef
75.
Zurück zum Zitat Yonezawa N, Koike M, Kameda A, Naito S, Hino T, Maeyama K, Ikeda T (2002) Chemospecificity in arylations of δ- and γ-ketocarboxylic acids with P2O5–MsOH, TfOH, and related acidic media. Synth Commun 32:3169–3180CrossRef Yonezawa N, Koike M, Kameda A, Naito S, Hino T, Maeyama K, Ikeda T (2002) Chemospecificity in arylations of δ- and γ-ketocarboxylic acids with P2O5–MsOH, TfOH, and related acidic media. Synth Commun 32:3169–3180CrossRef
76.
Zurück zum Zitat Makiko H, Yumi M, Hiroshi Y (2011) Oxygen-containing cyclic compound and method for producing the same. JP 2011201847 A Makiko H, Yumi M, Hiroshi Y (2011) Oxygen-containing cyclic compound and method for producing the same. JP 2011201847 A
77.
Zurück zum Zitat Jansen JC, Creyghton EJ, Njo SL, van Koningsveld H, van Bekkum H (1997) On the remarkable behaviour of zeolite Beta in acid catalysis. Catal Today 38:205–212CrossRef Jansen JC, Creyghton EJ, Njo SL, van Koningsveld H, van Bekkum H (1997) On the remarkable behaviour of zeolite Beta in acid catalysis. Catal Today 38:205–212CrossRef
78.
Zurück zum Zitat Zhao Z, Xu S, Hu MY, Bao X, Peden CHF, Hu J (2015) Investigation of aluminum site changes of dehydrated zeolite H-Beta during a rehydration process by high-field solid-state NMR. J Phys Chem C 119:1410–1417CrossRef Zhao Z, Xu S, Hu MY, Bao X, Peden CHF, Hu J (2015) Investigation of aluminum site changes of dehydrated zeolite H-Beta during a rehydration process by high-field solid-state NMR. J Phys Chem C 119:1410–1417CrossRef
79.
Zurück zum Zitat Galletti AMR, Antonetti C, De Luise V, Martinelli M (2012) A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem 14:688–694CrossRef Galletti AMR, Antonetti C, De Luise V, Martinelli M (2012) A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem 14:688–694CrossRef
80.
Zurück zum Zitat Singh AP (1992) Preparation of bisphenol-a over zeolite catalysts. Catal Lett 16:431–435CrossRef Singh AP (1992) Preparation of bisphenol-a over zeolite catalysts. Catal Lett 16:431–435CrossRef
81.
Zurück zum Zitat Darbre PD (2015) Chapter 1 – what are endocrine disrupters and where are they found? In: Darbre PD (ed) Endocrine disruption and human health. Academic Press, Boston, pp 3–26CrossRef Darbre PD (2015) Chapter 1 – what are endocrine disrupters and where are they found? In: Darbre PD (ed) Endocrine disruption and human health. Academic Press, Boston, pp 3–26CrossRef
82.
Zurück zum Zitat Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycling 28:227–239CrossRef Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycling 28:227–239CrossRef
83.
Zurück zum Zitat Bader AR, Kontowicz AD (1954) γ,γ-Bis-(p-hydroxyphenyl)-valeric acid. J Am Chem Soc 76:4465–4466CrossRef Bader AR, Kontowicz AD (1954) γ,γ-Bis-(p-hydroxyphenyl)-valeric acid. J Am Chem Soc 76:4465–4466CrossRef
84.
Zurück zum Zitat Yu X, Guo Y, Li K, Yang X, Xu L, Guo Y, Hu J (2008) Catalytic synthesis of diphenolic acid from levulinic acid over cesium partly substituted wells–dawson type heteropolyacid. J Mol Catal A Chem 290:44–53CrossRef Yu X, Guo Y, Li K, Yang X, Xu L, Guo Y, Hu J (2008) Catalytic synthesis of diphenolic acid from levulinic acid over cesium partly substituted wells–dawson type heteropolyacid. J Mol Catal A Chem 290:44–53CrossRef
85.
Zurück zum Zitat Guo Y, Li K, Yu X, Clark JH (2008) Mesoporous H3PW12O40-silica composite: efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Appl Catal B Environ 81:182–191CrossRef Guo Y, Li K, Yu X, Clark JH (2008) Mesoporous H3PW12O40-silica composite: efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Appl Catal B Environ 81:182–191CrossRef
86.
Zurück zum Zitat Guo Y, Li K, Clark JH (2007) The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40-silica composite catalysed reaction of levulinic acid. Green Chem 9:839–841CrossRef Guo Y, Li K, Clark JH (2007) The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40-silica composite catalysed reaction of levulinic acid. Green Chem 9:839–841CrossRef
87.
Zurück zum Zitat Li K, Hu J, Li W, Ma F, Xu L, Guo Y (2009) Design of mesostructured H3PW12O40-silica materials with controllable ordered and disordered pore geometries and their application for the synthesis of diphenolic acid. J Mater Chem 19:8628–8638CrossRef Li K, Hu J, Li W, Ma F, Xu L, Guo Y (2009) Design of mesostructured H3PW12O40-silica materials with controllable ordered and disordered pore geometries and their application for the synthesis of diphenolic acid. J Mater Chem 19:8628–8638CrossRef
88.
Zurück zum Zitat Van de Vyver S, Helsen S, Geboers J, Yu F, Thomas J, Smet M, Dehaen W, Román-Leshkov Y, Hermans I, Sels BF (2012) Mechanistic insights into the kinetic and regiochemical control of the thiol-promoted catalytic synthesis of diphenolic acid. ACS Catal 2:2700–2704CrossRef Van de Vyver S, Helsen S, Geboers J, Yu F, Thomas J, Smet M, Dehaen W, Román-Leshkov Y, Hermans I, Sels BF (2012) Mechanistic insights into the kinetic and regiochemical control of the thiol-promoted catalytic synthesis of diphenolic acid. ACS Catal 2:2700–2704CrossRef
89.
Zurück zum Zitat Van de Vyver S, Geboers J, Helsen S, Yu F, Thomas J, Smet M, Dehaen W, Sels BF (2012) Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene oxindole)s. Chem Commun 48:3497–3499CrossRef Van de Vyver S, Geboers J, Helsen S, Yu F, Thomas J, Smet M, Dehaen W, Sels BF (2012) Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene oxindole)s. Chem Commun 48:3497–3499CrossRef
90.
Zurück zum Zitat Liu H-F, Zeng F-X, Deng L, Liao B, Pang H, Guo Q-X (2013) Bronsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid. Green Chem 15:81–84CrossRef Liu H-F, Zeng F-X, Deng L, Liao B, Pang H, Guo Q-X (2013) Bronsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid. Green Chem 15:81–84CrossRef
91.
Zurück zum Zitat Shen Y, Sun J, Wang B, Xu F, Sun R (2014) Catalytic synthesis of diphenolic acid from levulinic acid over Bronsted acidic ionic liquids. Bioresources 9:3264–3275 Shen Y, Sun J, Wang B, Xu F, Sun R (2014) Catalytic synthesis of diphenolic acid from levulinic acid over Bronsted acidic ionic liquids. Bioresources 9:3264–3275
92.
Zurück zum Zitat Wang W, Li N, Li S, Li G, Chen F, Sheng X, Wang A, Wang X, Cong Y, Zhang T (2016) Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates. Green Chem 18:1218–1223CrossRef Wang W, Li N, Li S, Li G, Chen F, Sheng X, Wang A, Wang X, Cong Y, Zhang T (2016) Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates. Green Chem 18:1218–1223CrossRef
93.
Zurück zum Zitat Li G, Li N, Wang Z, Li C, Wang A, Wang X, Cong Y, Zhang T (2012) Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose. ChemSusChem 5:1958–1966CrossRef Li G, Li N, Wang Z, Li C, Wang A, Wang X, Cong Y, Zhang T (2012) Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose. ChemSusChem 5:1958–1966CrossRef
94.
Zurück zum Zitat De Melo FC, De Souzaa RF, Coutinhob PLA, De Souza MO (2014) Synthesis of 5-hydroxymethylfurfural from dehydration of fructose and glucose using ionic liquids. J Braz Chem Soc 25(12) De Melo FC, De Souzaa RF, Coutinhob PLA, De Souza MO (2014) Synthesis of 5-hydroxymethylfurfural from dehydration of fructose and glucose using ionic liquids. J Braz Chem Soc 25(12)
95.
Zurück zum Zitat Cinlar B, Wang T, Shanks BH (2013) Kinetics of monosaccharide conversion in the presence of homogeneous Bronsted acids. Appl Catal A Gen 450:237–242CrossRef Cinlar B, Wang T, Shanks BH (2013) Kinetics of monosaccharide conversion in the presence of homogeneous Bronsted acids. Appl Catal A Gen 450:237–242CrossRef
96.
Zurück zum Zitat Tuercke T, Panic S, Loebbecke S (2009) Microreactor process for the optimized synthesis of 5-hydroxymethylfurfural: a promising building block obtained by catalytic dehydration of fructose. Chem Eng Technol 32:1815–1822CrossRef Tuercke T, Panic S, Loebbecke S (2009) Microreactor process for the optimized synthesis of 5-hydroxymethylfurfural: a promising building block obtained by catalytic dehydration of fructose. Chem Eng Technol 32:1815–1822CrossRef
97.
Zurück zum Zitat Sievers C, Musin I, Marzialetti T, Olarte MB, Agrawal PK, Jones CW (2009) Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. ChemSusChem 2:665–671CrossRef Sievers C, Musin I, Marzialetti T, Olarte MB, Agrawal PK, Jones CW (2009) Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. ChemSusChem 2:665–671CrossRef
98.
Zurück zum Zitat Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydr Res 345:1846–1850CrossRef Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydr Res 345:1846–1850CrossRef
99.
Zurück zum Zitat Ray D, Mittal N, Chung WJ (2011) Phosphorous pentoxide mediated synthesis of 5-HMF in ionic liquid at low temperature. Carbohydr Res 346:2145–2148CrossRef Ray D, Mittal N, Chung WJ (2011) Phosphorous pentoxide mediated synthesis of 5-HMF in ionic liquid at low temperature. Carbohydr Res 346:2145–2148CrossRef
100.
Zurück zum Zitat Thananatthanachon T, Rauchfuss TB (2010) Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation. ChemSusChem 3:1139–1141CrossRef Thananatthanachon T, Rauchfuss TB (2010) Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation. ChemSusChem 3:1139–1141CrossRef
101.
Zurück zum Zitat De S, Dutta S, Saha B (2011) Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water. Green Chem 13:2859–2868CrossRef De S, Dutta S, Saha B (2011) Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water. Green Chem 13:2859–2868CrossRef
102.
Zurück zum Zitat Seri K, Inoue Y, Ishida H (2000) Highly efficient catalytic activity of lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents. Chem Lett 29:22CrossRef Seri K, Inoue Y, Ishida H (2000) Highly efficient catalytic activity of lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents. Chem Lett 29:22CrossRef
103.
Zurück zum Zitat Deng T, Cui X, Qi Y, Wang Y, Hou X, Zhu Y (2012) Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water. Chem Commun 48:5494–5496CrossRef Deng T, Cui X, Qi Y, Wang Y, Hou X, Zhu Y (2012) Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water. Chem Commun 48:5494–5496CrossRef
104.
Zurück zum Zitat Caes BR, Raines RT (2011) Conversion of fructose into 5-(hydroxymethyl)furfural in sulfolane. ChemSusChem 4:353–356CrossRef Caes BR, Raines RT (2011) Conversion of fructose into 5-(hydroxymethyl)furfural in sulfolane. ChemSusChem 4:353–356CrossRef
105.
Zurück zum Zitat Shen Y, Sun J, Yi Y, Wang B, Xu F, Sun R (2014) 5-Hydroxymethylfurfural and levulinic acid derived from monosaccharides dehydration promoted by InCl3 in aqueous medium. J Mol Catal A Chem 394:114–120CrossRef Shen Y, Sun J, Yi Y, Wang B, Xu F, Sun R (2014) 5-Hydroxymethylfurfural and levulinic acid derived from monosaccharides dehydration promoted by InCl3 in aqueous medium. J Mol Catal A Chem 394:114–120CrossRef
106.
Zurück zum Zitat Shen Y, Xu YF, Sun JK, Wang B, Xu F, Sun RC (2014) Efficient conversion of monosaccharides into 5-hydroxymethylfurfural and levulinic acid in InCl3-H2O medium. Catal Commun 50:17–20CrossRef Shen Y, Xu YF, Sun JK, Wang B, Xu F, Sun RC (2014) Efficient conversion of monosaccharides into 5-hydroxymethylfurfural and levulinic acid in InCl3-H2O medium. Catal Commun 50:17–20CrossRef
107.
Zurück zum Zitat Mittal N, Nisola GM, Chung W-J (2012) Facile catalytic dehydration of fructose to 5-hydroxymethylfurfural by niobium pentachloride. Tetrahedron Lett 53:3149–3155CrossRef Mittal N, Nisola GM, Chung W-J (2012) Facile catalytic dehydration of fructose to 5-hydroxymethylfurfural by niobium pentachloride. Tetrahedron Lett 53:3149–3155CrossRef
108.
Zurück zum Zitat Pidko EA, Degirmenci V, Hensen EJM (2012) On the mechanism of lewis acid catalyzed glucose transformations in ionic liquids. ChemCatChem 4:1263–1271CrossRef Pidko EA, Degirmenci V, Hensen EJM (2012) On the mechanism of lewis acid catalyzed glucose transformations in ionic liquids. ChemCatChem 4:1263–1271CrossRef
109.
Zurück zum Zitat Eminov S, Wilton-Ely JDET, Hallett JP (2014) Highly selective and near-quantitative conversion of fructose to 5-hydroxymethylfurfural using mildly acidic ionic liquids. ACS Sustain Chem Eng 2:978–981CrossRef Eminov S, Wilton-Ely JDET, Hallett JP (2014) Highly selective and near-quantitative conversion of fructose to 5-hydroxymethylfurfural using mildly acidic ionic liquids. ACS Sustain Chem Eng 2:978–981CrossRef
110.
Zurück zum Zitat Sampath G, Srinivasan K (2017) Remarkable catalytic synergism of alumina, metal salt and solvent for conversion of biomass sugars to furan compounds. Appl Catal A Gen 533:75–80CrossRef Sampath G, Srinivasan K (2017) Remarkable catalytic synergism of alumina, metal salt and solvent for conversion of biomass sugars to furan compounds. Appl Catal A Gen 533:75–80CrossRef
111.
Zurück zum Zitat Tiziana Armaroli GB, Carlini C, Giuttari M, Sbrana G, Galletti AMR (2000) Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A Chem 151:233–243CrossRef Tiziana Armaroli GB, Carlini C, Giuttari M, Sbrana G, Galletti AMR (2000) Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A Chem 151:233–243CrossRef
112.
Zurück zum Zitat Carniti P, Gervasini A, Marzo M (2010) Silica–niobia oxides as viable acid catalysts in water: effective vs. intrinsic acidity. Catal Today 152:42–47CrossRef Carniti P, Gervasini A, Marzo M (2010) Silica–niobia oxides as viable acid catalysts in water: effective vs. intrinsic acidity. Catal Today 152:42–47CrossRef
113.
Zurück zum Zitat Carniti P, Gervasini A, Marzo M (2011) Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catal Commun 12:1122–1126CrossRef Carniti P, Gervasini A, Marzo M (2011) Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catal Commun 12:1122–1126CrossRef
114.
Zurück zum Zitat Bhaumik P, Dhepe PL (2013) Influence of properties of SAPO’s on the one-pot conversion of mono-, di- and poly-saccharides into 5-hydroxymethylfurfural. RSC Adv 3:17156CrossRef Bhaumik P, Dhepe PL (2013) Influence of properties of SAPO’s on the one-pot conversion of mono-, di- and poly-saccharides into 5-hydroxymethylfurfural. RSC Adv 3:17156CrossRef
115.
Zurück zum Zitat Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem Commun 47:4469–4471CrossRef Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem Commun 47:4469–4471CrossRef
116.
Zurück zum Zitat De S, Dutta S, Patra AK, Bhaumik A, Saha B (2011) Self-assembly of mesoporous TiO2 nanospheres via aspartic acid templating pathway and its catalytic application for 5-hydroxymethyl-furfural synthesis. J Mater Chem 21:17505CrossRef De S, Dutta S, Patra AK, Bhaumik A, Saha B (2011) Self-assembly of mesoporous TiO2 nanospheres via aspartic acid templating pathway and its catalytic application for 5-hydroxymethyl-furfural synthesis. J Mater Chem 21:17505CrossRef
117.
Zurück zum Zitat Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catal Commun 10:1771–1775CrossRef Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catal Commun 10:1771–1775CrossRef
118.
Zurück zum Zitat Timofeeva MN (2003) Acid catalysis by heteropoly acids. Appl Catal A Gen 256:19–35CrossRef Timofeeva MN (2003) Acid catalysis by heteropoly acids. Appl Catal A Gen 256:19–35CrossRef
119.
Zurück zum Zitat Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198CrossRef Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198CrossRef
120.
Zurück zum Zitat Yunxiang Qiao ZH (2009) Polyoxometalate–based solid and liquid salts for catalysis. Curr Org Chem 13:1347–1365CrossRef Yunxiang Qiao ZH (2009) Polyoxometalate–based solid and liquid salts for catalysis. Curr Org Chem 13:1347–1365CrossRef
121.
Zurück zum Zitat Xiao Y, Song Y-F (2014) Efficient catalytic conversion of the fructose into 5-hydroxymethylfurfural by heteropolyacids in the ionic liquid of 1-butyl-3-methyl imidazolium chloride. Appl Catal A Gen 484:74–78CrossRef Xiao Y, Song Y-F (2014) Efficient catalytic conversion of the fructose into 5-hydroxymethylfurfural by heteropolyacids in the ionic liquid of 1-butyl-3-methyl imidazolium chloride. Appl Catal A Gen 484:74–78CrossRef
122.
Zurück zum Zitat Zheng H, Sun Z, Yi X, Wang S, Li J, Wang X, Jiang Z (2013) A water-tolerant C16H3PW11CrO39 catalyst for the efficient conversion of monosaccharides into 5-hydroxymethylfurfural in a micellar system. RSC Adv 3:23051CrossRef Zheng H, Sun Z, Yi X, Wang S, Li J, Wang X, Jiang Z (2013) A water-tolerant C16H3PW11CrO39 catalyst for the efficient conversion of monosaccharides into 5-hydroxymethylfurfural in a micellar system. RSC Adv 3:23051CrossRef
123.
Zurück zum Zitat Zhao Q, Wang L, Zhao S, Wang X, Wang S (2011) High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst. Fuel 90:2289–2293CrossRef Zhao Q, Wang L, Zhao S, Wang X, Wang S (2011) High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst. Fuel 90:2289–2293CrossRef
124.
Zurück zum Zitat Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenergy 35:2659–2665CrossRef Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenergy 35:2659–2665CrossRef
125.
Zurück zum Zitat Qu Y, Huang C, Zhang J, Chen B (2012) Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt. Bioresour Technol 106:170–172CrossRef Qu Y, Huang C, Zhang J, Chen B (2012) Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt. Bioresour Technol 106:170–172CrossRef
126.
Zurück zum Zitat Ganji P (2020) Synthesis and catalytic performance of SnxSTA by microwave-assisted hydrothermal synthesis for fructose to HMF. Biomass Conv Bioref 10:823–830CrossRef Ganji P (2020) Synthesis and catalytic performance of SnxSTA by microwave-assisted hydrothermal synthesis for fructose to HMF. Biomass Conv Bioref 10:823–830CrossRef
127.
Zurück zum Zitat Harmer MA, Sun Q (2001) Solid acid catalysis using ion-exchange resins. Appl Catal A Gen 221:45–62CrossRef Harmer MA, Sun Q (2001) Solid acid catalysis using ion-exchange resins. Appl Catal A Gen 221:45–62CrossRef
128.
Zurück zum Zitat Barbaro P, Liguori F (2009) Ion exchange resins: catalyst recovery and recycle. Chem Rev 109:515–529CrossRef Barbaro P, Liguori F (2009) Ion exchange resins: catalyst recovery and recycle. Chem Rev 109:515–529CrossRef
129.
Zurück zum Zitat Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA (2012) Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system. ChemSusChem 5:1812–1819CrossRef Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA (2012) Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system. ChemSusChem 5:1812–1819CrossRef
130.
Zurück zum Zitat Zhu H, Cao Q, Li C, Mu X (2011) Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents. Carbohydr Res 346:2016–2018CrossRef Zhu H, Cao Q, Li C, Mu X (2011) Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents. Carbohydr Res 346:2016–2018CrossRef
131.
Zurück zum Zitat Jeong J, Antonyraj CA, Shin S, Kim S, Kim B, Lee K-Y, Cho JK (2013) Commercially attractive process for production of 5-hydroxymethyl-2-furfural from high fructose corn syrup. J Ind Eng Chem 19:1106–1111CrossRef Jeong J, Antonyraj CA, Shin S, Kim S, Kim B, Lee K-Y, Cho JK (2013) Commercially attractive process for production of 5-hydroxymethyl-2-furfural from high fructose corn syrup. J Ind Eng Chem 19:1106–1111CrossRef
132.
Zurück zum Zitat Morales G, Melero JA, Paniagua M, Iglesias J, Hernández B, Sanz M (2014) Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide. Chin J Catal 35:644–655CrossRef Morales G, Melero JA, Paniagua M, Iglesias J, Hernández B, Sanz M (2014) Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide. Chin J Catal 35:644–655CrossRef
133.
Zurück zum Zitat Sampath G, Kannan S (2013) Fructose dehydration to 5-hydroxymethylfurfural: remarkable solvent influence on recyclability of Amberlyst-15 catalyst and regeneration studies. Catal Commun 37:41–44CrossRef Sampath G, Kannan S (2013) Fructose dehydration to 5-hydroxymethylfurfural: remarkable solvent influence on recyclability of Amberlyst-15 catalyst and regeneration studies. Catal Commun 37:41–44CrossRef
134.
Zurück zum Zitat Wang J, Xu W, Ren J, Liu X, Lu G, Wang Y (2011) Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chem 13:2678–2681CrossRef Wang J, Xu W, Ren J, Liu X, Lu G, Wang Y (2011) Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chem 13:2678–2681CrossRef
135.
Zurück zum Zitat Liu B, Zhang Z, Huang K (2013) Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose 20:2081–2089CrossRef Liu B, Zhang Z, Huang K (2013) Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose 20:2081–2089CrossRef
136.
Zurück zum Zitat Liu R, Chen J, Huang X, Chen L, Ma L, Li X (2013) Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem 15:2895–2903CrossRef Liu R, Chen J, Huang X, Chen L, Ma L, Li X (2013) Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem 15:2895–2903CrossRef
137.
Zurück zum Zitat Russo PA, Antunes MM, Neves P, Wiper PV, Fazio E, Neri F, Barreca F, Mafra L, Pillinger M, Pinna N, Valente AA (2014) Solid acids with SO3H groups and tunable surface properties: versatile catalysts for biomass conversion. J Mater Chem A 2:11813–11824CrossRef Russo PA, Antunes MM, Neves P, Wiper PV, Fazio E, Neri F, Barreca F, Mafra L, Pillinger M, Pinna N, Valente AA (2014) Solid acids with SO3H groups and tunable surface properties: versatile catalysts for biomass conversion. J Mater Chem A 2:11813–11824CrossRef
138.
Zurück zum Zitat Wang H, Kong Q, Wang Y, Deng T, Chen C, Hou X, Zhu Y (2014) Graphene oxide catalyzed dehydration of fructose into 5-hydroxymethylfurfural with isopropanol as cosolvent. ChemCatChem 6:728–732CrossRef Wang H, Kong Q, Wang Y, Deng T, Chen C, Hou X, Zhu Y (2014) Graphene oxide catalyzed dehydration of fructose into 5-hydroxymethylfurfural with isopropanol as cosolvent. ChemCatChem 6:728–732CrossRef
139.
Zurück zum Zitat Moreau C, Durand R, Pourcheron C, Razigade S (1994) Preparation of 5-hydroxymethylfurfural from fructose and precursors over H-form zeolites. Ind Crop Prod 3:85–90CrossRef Moreau C, Durand R, Pourcheron C, Razigade S (1994) Preparation of 5-hydroxymethylfurfural from fructose and precursors over H-form zeolites. Ind Crop Prod 3:85–90CrossRef
140.
Zurück zum Zitat Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145:211–224CrossRef Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145:211–224CrossRef
141.
Zurück zum Zitat Shi Y, Li X, Hu J, Lu J, Ma Y, Zhang Y, Tang Y (2011) Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance. J Mater Chem 21:16223–16230CrossRef Shi Y, Li X, Hu J, Lu J, Ma Y, Zhang Y, Tang Y (2011) Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance. J Mater Chem 21:16223–16230CrossRef
142.
Zurück zum Zitat Wang J, Ren J, Liu X, Xi J, Xia Q, Zu Y, Lu G, Wang Y (2012) Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chem 14:2506–2512CrossRef Wang J, Ren J, Liu X, Xi J, Xia Q, Zu Y, Lu G, Wang Y (2012) Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chem 14:2506–2512CrossRef
143.
Zurück zum Zitat Liu B, Gou Z, Liu A, Zhang Z (2015) Synthesis of furan compounds from HMF and fructose catalyzed by aluminum-exchanged K-10 clay. J Ind Eng Chem 21:338–339CrossRef Liu B, Gou Z, Liu A, Zhang Z (2015) Synthesis of furan compounds from HMF and fructose catalyzed by aluminum-exchanged K-10 clay. J Ind Eng Chem 21:338–339CrossRef
144.
Zurück zum Zitat Yang F, Weng J, Ding J, Zhao Z, Qin L, Xia F (2019) Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay. Attapulgite Renew Energy 151:829–836CrossRef Yang F, Weng J, Ding J, Zhao Z, Qin L, Xia F (2019) Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay. Attapulgite Renew Energy 151:829–836CrossRef
145.
Zurück zum Zitat Sajid M, Zhao X, Liu D (2018) Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem 20:5427–5453CrossRef Sajid M, Zhao X, Liu D (2018) Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem 20:5427–5453CrossRef
146.
Zurück zum Zitat Tong X, Yu L, Chen H, Zhuang X, Liao S, Cui H (2017) Highly efficient and selective oxidation of 5-hydroxymethylfurfural by molecular oxygen in the presence of Cu-MnO2 catalyst. Catal Commun 90:91–94CrossRef Tong X, Yu L, Chen H, Zhuang X, Liao S, Cui H (2017) Highly efficient and selective oxidation of 5-hydroxymethylfurfural by molecular oxygen in the presence of Cu-MnO2 catalyst. Catal Commun 90:91–94CrossRef
147.
Zurück zum Zitat Krivtsov I, García-López EI, Marcì G, Palmisano L, Amghouz Z, García JR, Ordóñez S, Díaz E (2017) Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Appl Catal B Environ 204:430–439CrossRef Krivtsov I, García-López EI, Marcì G, Palmisano L, Amghouz Z, García JR, Ordóñez S, Díaz E (2017) Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Appl Catal B Environ 204:430–439CrossRef
148.
Zurück zum Zitat Hayashi E, Komanoya T, Kamata K, Hara M (2017) Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with MnO2. ChemSusChem 10:654–658CrossRef Hayashi E, Komanoya T, Kamata K, Hara M (2017) Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with MnO2. ChemSusChem 10:654–658CrossRef
149.
Zurück zum Zitat Han X, Li C, Liu X, Xia Q, Wang Y (2017) Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx–CeO2 composite catalysts. Green Chem 19:996–1004CrossRef Han X, Li C, Liu X, Xia Q, Wang Y (2017) Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx–CeO2 composite catalysts. Green Chem 19:996–1004CrossRef
150.
Zurück zum Zitat Gui Z, Saravanamurugan S, Cao W, Schill L, Chen L, Qi Z, Riisager A (2017) Highly selective aerobic oxidation of 5-hydroxymethyl furfural into 2,5-diformylfuran over Mn-Co binary oxides. ChemistrySelect 2:6632–6639CrossRef Gui Z, Saravanamurugan S, Cao W, Schill L, Chen L, Qi Z, Riisager A (2017) Highly selective aerobic oxidation of 5-hydroxymethyl furfural into 2,5-diformylfuran over Mn-Co binary oxides. ChemistrySelect 2:6632–6639CrossRef
151.
Zurück zum Zitat Cui M, Huang R, Qi W, Su R, He Z (2017) Cascade catalysis via dehydration and oxidation: one-pot synthesis of 2,5-diformylfuran from fructose using acid and V2O5/ceramic catalysts. RSC Adv 7:7560–7566CrossRef Cui M, Huang R, Qi W, Su R, He Z (2017) Cascade catalysis via dehydration and oxidation: one-pot synthesis of 2,5-diformylfuran from fructose using acid and V2O5/ceramic catalysts. RSC Adv 7:7560–7566CrossRef
152.
Zurück zum Zitat Zuo X, Venkitasubramanian P, Busch DH, Subramaniam B (2016) Optimization of Co/Mn/Br-Catalyzed oxidation of 5-Hydroxymethylfurfural to enhance 2,5-furandicarboxylic acid yield and minimize substrate burning. ACS Sustain Chem Eng 4:3659–3668CrossRef Zuo X, Venkitasubramanian P, Busch DH, Subramaniam B (2016) Optimization of Co/Mn/Br-Catalyzed oxidation of 5-Hydroxymethylfurfural to enhance 2,5-furandicarboxylic acid yield and minimize substrate burning. ACS Sustain Chem Eng 4:3659–3668CrossRef
153.
Zurück zum Zitat Zhang Y, Xue Z, Wang J, Zhao X, Deng Y, Zhao W, Mu T (2016) Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSC Adv 6:51229–51237CrossRef Zhang Y, Xue Z, Wang J, Zhao X, Deng Y, Zhao W, Mu T (2016) Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSC Adv 6:51229–51237CrossRef
154.
Zurück zum Zitat Ventura M, Aresta M, Dibenedetto A (2016) Selective aerobic oxidation of 5-(Hydroxymethyl)furfural to 5-formyl-2-furancarboxylic acid in water. ChemSusChem 9:1096–1100CrossRef Ventura M, Aresta M, Dibenedetto A (2016) Selective aerobic oxidation of 5-(Hydroxymethyl)furfural to 5-formyl-2-furancarboxylic acid in water. ChemSusChem 9:1096–1100CrossRef
155.
Zurück zum Zitat Nguyen CV, Liao Y-T, Kang T-C, Chen JE, Yoshikawa T, Nakasaka Y, Masuda T, Wu KCW (2016) A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem 18:5957–5961CrossRef Nguyen CV, Liao Y-T, Kang T-C, Chen JE, Yoshikawa T, Nakasaka Y, Masuda T, Wu KCW (2016) A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem 18:5957–5961CrossRef
156.
Zurück zum Zitat Neațu F, Marin RS, Florea M, Petrea N, Pavel OD, Pârvulescu VI (2016) Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts. Appl Catal B Environ 180:751–757CrossRef Neațu F, Marin RS, Florea M, Petrea N, Pavel OD, Pârvulescu VI (2016) Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts. Appl Catal B Environ 180:751–757CrossRef
157.
Zurück zum Zitat Wang S, Zhang Z, Liu B (2015) Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4–CoOx magnetite nanocatalyst. ACS Sustain Chem Eng 3:406–412CrossRef Wang S, Zhang Z, Liu B (2015) Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4–CoOx magnetite nanocatalyst. ACS Sustain Chem Eng 3:406–412CrossRef
158.
Zurück zum Zitat Saha B, Gupta D, Abu-Omar MM, Modak A, Bhaumik A (2013) Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid. J Catal 299:316–320CrossRef Saha B, Gupta D, Abu-Omar MM, Modak A, Bhaumik A (2013) Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid. J Catal 299:316–320CrossRef
159.
Zurück zum Zitat Sádaba I, Gorbanev YY, Kegnaes S, Putluru SSR, Berg RW, Riisager A (2013) Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem 5:284–293CrossRef Sádaba I, Gorbanev YY, Kegnaes S, Putluru SSR, Berg RW, Riisager A (2013) Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem 5:284–293CrossRef
160.
Zurück zum Zitat Bao L, Sun F-Z, Zhang G-Y, Hu T-L (2020) Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over holey 2 D Mn2O3 nanoflakes from a Mn-based MOF. ChemSusChem 13:548–555CrossRef Bao L, Sun F-Z, Zhang G-Y, Hu T-L (2020) Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over holey 2 D Mn2O3 nanoflakes from a Mn-based MOF. ChemSusChem 13:548–555CrossRef
161.
Zurück zum Zitat Ait Rass H, Essayem N, Besson M (2013) Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chem 15:2240–2251CrossRef Ait Rass H, Essayem N, Besson M (2013) Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chem 15:2240–2251CrossRef
162.
Zurück zum Zitat Siyo B, Schneider M, Pohl M-M, Langer P, Steinfeldt N (2014) Synthesis, characterization, and application of PVP-Pd NP in the aerobic oxidation of 5-hydroxymethylfurfural (HMF). Catal Lett 144:498–506CrossRef Siyo B, Schneider M, Pohl M-M, Langer P, Steinfeldt N (2014) Synthesis, characterization, and application of PVP-Pd NP in the aerobic oxidation of 5-hydroxymethylfurfural (HMF). Catal Lett 144:498–506CrossRef
163.
Zurück zum Zitat Xu J, Liu J, Ma J, Cai J, Du Z, Ma H (2015) Advances in catalytic synthesis of bio-based dicarboxylic acid. Sci Sin Chim 45:526–532CrossRef Xu J, Liu J, Ma J, Cai J, Du Z, Ma H (2015) Advances in catalytic synthesis of bio-based dicarboxylic acid. Sci Sin Chim 45:526–532CrossRef
164.
Zurück zum Zitat Gorbanev YY, Kegnæs S, Riisager A (2011) Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water. Top Catal 54:1318–1324CrossRef Gorbanev YY, Kegnæs S, Riisager A (2011) Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water. Top Catal 54:1318–1324CrossRef
165.
Zurück zum Zitat Artz J, Palkovits R (2015) Base-free aqueous-phase oxidation of 5-hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks. ChemSusChem 8:3832–3838CrossRef Artz J, Palkovits R (2015) Base-free aqueous-phase oxidation of 5-hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks. ChemSusChem 8:3832–3838CrossRef
166.
Zurück zum Zitat Yi G, Teong SP, Zhang Y (2016) Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst. Green Chem 18:979–983CrossRef Yi G, Teong SP, Zhang Y (2016) Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst. Green Chem 18:979–983CrossRef
167.
Zurück zum Zitat Mishra DK, Lee HJ, Kim J, Lee H-S, Cho JK, Suh Y-W, Yi Y, Kim YJ (2017) MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chem 19:1619–1623CrossRef Mishra DK, Lee HJ, Kim J, Lee H-S, Cho JK, Suh Y-W, Yi Y, Kim YJ (2017) MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chem 19:1619–1623CrossRef
168.
Zurück zum Zitat Wang F, Yuan Z, Liu B, Chen S, Zhang Z (2016) Catalytic oxidation of biomass derived 5-hydroxymethylfurfural (HMF) over Ru III -incorporated zirconium phosphate catalyst. J Ind Eng Chem 38:181–185CrossRef Wang F, Yuan Z, Liu B, Chen S, Zhang Z (2016) Catalytic oxidation of biomass derived 5-hydroxymethylfurfural (HMF) over Ru III -incorporated zirconium phosphate catalyst. J Ind Eng Chem 38:181–185CrossRef
169.
Zurück zum Zitat Pichler CM, Al-Shaal MG, Gu D, Joshi H, Ciptonugroho W, Schuth F (2018) Ruthenium supported on high-surface-area zirconia as an efficient catalyst for the base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ChemSusChem 11:2083–2090CrossRef Pichler CM, Al-Shaal MG, Gu D, Joshi H, Ciptonugroho W, Schuth F (2018) Ruthenium supported on high-surface-area zirconia as an efficient catalyst for the base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ChemSusChem 11:2083–2090CrossRef
170.
Zurück zum Zitat Antonyraj CA, Huynh NTT, Lee KW, Kim YJ, Shin S, Shin JS, Cho JK (2018) Base-free oxidation of 5-hydroxymethyl-2-furfural to 2,5-furan dicarboxylic acid over basic metal oxide-supported ruthenium catalysts under aqueous conditions. J Chem Sci 130:156CrossRef Antonyraj CA, Huynh NTT, Lee KW, Kim YJ, Shin S, Shin JS, Cho JK (2018) Base-free oxidation of 5-hydroxymethyl-2-furfural to 2,5-furan dicarboxylic acid over basic metal oxide-supported ruthenium catalysts under aqueous conditions. J Chem Sci 130:156CrossRef
171.
Zurück zum Zitat Gao T, Yin Y, Fang W, Cao Q (2018) Highly dispersed ruthenium nanoparticles on hydroxyapatite as selective and reusable catalyst for aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under base-free conditions. Mol Catal 450:55–64CrossRef Gao T, Yin Y, Fang W, Cao Q (2018) Highly dispersed ruthenium nanoparticles on hydroxyapatite as selective and reusable catalyst for aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under base-free conditions. Mol Catal 450:55–64CrossRef
172.
Zurück zum Zitat Sharma P, Solanki M, Sharma RK (2019) Metal-functionalized carbon nanotubes for biomass conversion: base-free highly efficient and recyclable catalysts for aerobic oxidation of 5-hydroxymethylfurfural. New J Chem 43:10601–10609CrossRef Sharma P, Solanki M, Sharma RK (2019) Metal-functionalized carbon nanotubes for biomass conversion: base-free highly efficient and recyclable catalysts for aerobic oxidation of 5-hydroxymethylfurfural. New J Chem 43:10601–10609CrossRef
Metadaten
Titel
Levulinic Acid- and Furan-Based Multifunctional Materials: Opportunities and Challenges
verfasst von
Sreedhar Gundekari
Rajathsing Kalusulingam
Bhavesh Dakhara
Mariappan Mani
Joyee Mitra
Kannan Srinivasan
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_11