Skip to main content
Erschienen in: Integrating Materials and Manufacturing Innovation 4/2020

19.10.2020 | Thematic Section: 5th International Congress on 3D Materials Science

Unsupervised Deep Learning for Laboratory-Based Diffraction Contrast Tomography

verfasst von: Emil Hovad, Haixing Fang, Yubin Zhang, Line Katrine Harder Clemmensen, Bjarne Kjær Ersbøll, Dorte Juul Jensen

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An important leap forward for the 3D community is the possibility to perform non-destructive 3D microstructural imaging in the home laboratories. This possibility is profiled by a recently developed technique—laboratory X-ray diffraction contrast tomography (LabDCT). As diffraction spots in LabDCT images are the basis for 3D reconstruction of microstructures, it is critical to get their identification as precise as possible. In the present work we use a deep learning (DL) routine to optimize the identification of the spots. It is shown that by adding an artificial simple constant background noise to a series of forward simulated LabDCT diffraction images, DL can be trained and then learn to remove high frequency noise and low frequency radial gradients in brightness in the real experimental LabDCT images. The training of the DL routine is unsupervised in the sense that no human intervention is needed for labelling the data. The reduction in high frequency noise and low frequency radial gradients in brightness is demonstrated by comparing line profile scans through the experimental and the DL output images. Finally, the implications of this reduction procedure on the spot identification are analysed and possible improvements are discussed.
Literatur
1.
Zurück zum Zitat Poulsen H, Fæster S, Lauridsen E, Schmidt S, Suter R, Lienert U, Margulies L, Lorentzen T, Juul Jensen D (2001) Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Crystallogr. 34:751–756CrossRef Poulsen H, Fæster S, Lauridsen E, Schmidt S, Suter R, Lienert U, Margulies L, Lorentzen T, Juul Jensen D (2001) Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Crystallogr. 34:751–756CrossRef
2.
Zurück zum Zitat Tischler J, Liu W, Xu R (2019) Micro-diffraction in 3D. In: Proceedings of 40th Risø international symposium on materials science: metal microstructures in 2D, 3D and 4D, pp 329–334 Tischler J, Liu W, Xu R (2019) Micro-diffraction in 3D. In: Proceedings of 40th Risø international symposium on materials science: metal microstructures in 2D, 3D and 4D, pp 329–334
3.
Zurück zum Zitat Zhang, Y (2019) Quantification of local boundary migration in 2D/3D. In: IOP conference series: materials science and engineering, vol 580, 012015 Zhang, Y (2019) Quantification of local boundary migration in 2D/3D. In: IOP conference series: materials science and engineering, vol 580, 012015
4.
Zurück zum Zitat Bhattacharya A, Shen YF, Hefferan CM, Li SF, Lind J, Suter RM, Rohrer GS (2019) Three-dimensional observations of grain volume changes during annealing of polycrystalline Ni. Acta Mater 167:40–50CrossRef Bhattacharya A, Shen YF, Hefferan CM, Li SF, Lind J, Suter RM, Rohrer GS (2019) Three-dimensional observations of grain volume changes during annealing of polycrystalline Ni. Acta Mater 167:40–50CrossRef
5.
Zurück zum Zitat Hefferan CM, Lind J, Li SF, Lienert U, Rollett AD, Suter RM (2012) Observation of recovery and recrystallization in high-purity aluminum measured with forward modeling analysis of high-energy diffraction microscopy. Acta Mater 60(10):4311–4318CrossRef Hefferan CM, Lind J, Li SF, Lienert U, Rollett AD, Suter RM (2012) Observation of recovery and recrystallization in high-purity aluminum measured with forward modeling analysis of high-energy diffraction microscopy. Acta Mater 60(10):4311–4318CrossRef
6.
Zurück zum Zitat Bachmann F, Bale H, Gueninchault N, Holzner C, Lauridsen EM (2019) 3D grain reconstruction from laboratory diffraction contrast tomography. J Appl Crystallogr 52(3):643–651CrossRef Bachmann F, Bale H, Gueninchault N, Holzner C, Lauridsen EM (2019) 3D grain reconstruction from laboratory diffraction contrast tomography. J Appl Crystallogr 52(3):643–651CrossRef
7.
Zurück zum Zitat Oddershede J, Sun J, Gueninchault N, Bachmann F, Bale H, Holzner C, Lauridsen E (2019) Non-destructive characterization of polycrystalline materials in 3d by laboratory diffraction contrast tomography. Integr Mater Manuf Innov 8(2):217–225CrossRef Oddershede J, Sun J, Gueninchault N, Bachmann F, Bale H, Holzner C, Lauridsen E (2019) Non-destructive characterization of polycrystalline materials in 3d by laboratory diffraction contrast tomography. Integr Mater Manuf Innov 8(2):217–225CrossRef
11.
Zurück zum Zitat Fang H, Juul Jensen D, Zhang Y (2019) An efficient method to improve the spatial resolution of laboratory x-ray diffraction contrast tomography. In: IOP conference series: materials science and engineering, vol 580 (1) 012030 Fang H, Juul Jensen D, Zhang Y (2019) An efficient method to improve the spatial resolution of laboratory x-ray diffraction contrast tomography. In: IOP conference series: materials science and engineering, vol 580 (1) 012030
13.
Zurück zum Zitat Boone JM, Seibert JA (1997) An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kv. Med Phys 24(11):1661–1670CrossRef Boone JM, Seibert JA (1997) An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kv. Med Phys 24(11):1661–1670CrossRef
Metadaten
Titel
Unsupervised Deep Learning for Laboratory-Based Diffraction Contrast Tomography
verfasst von
Emil Hovad
Haixing Fang
Yubin Zhang
Line Katrine Harder Clemmensen
Bjarne Kjær Ersbøll
Dorte Juul Jensen
Publikationsdatum
19.10.2020
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 4/2020
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-020-00189-x

Weitere Artikel der Ausgabe 4/2020

Integrating Materials and Manufacturing Innovation 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.