Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2019

26.10.2018

Urchin-like NiCo2S4 infused sulfur as cathode for lithium–sulfur battery

verfasst von: Lingshan Wu, Shuihua Tang, Renjie Qu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A shuttle effect caused by soluble intermediates is one of the most crucial issues in lithium sulfur batteries, which results in a short cycle life and low coulombic efficiency. Recently, binary metal sulfides as electrode materials have been used for miscellaneous application accounting for their larger redox reaction sites and higher electrical conductivity. Herein, a novel urchin-like NiCo2S4 was synthesized via two steps of hydrothermal process and then firstly used as a conductive and polar host for sulfur in lithium sulfur batteries. The obtained NiCo2S4/S composite demonstrates a capacity of 1028 mAh g−1 for the first discharge and maintains 421 mAh g−1 after 100 cycles at 0.1 C. Furthermore, the composite still shows a remarkable cycling stability at a higher rate, a low capacity fade rate of 0.18% per cycle can be achieved and a reversible capacity of 329 mAh g−1 can be obtained after 300 cycles at 1 C. This excellent performance results from a weakened polysulfide shuttle caused by a strong affinity between NiCo2S4 and polysulfides.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.B. Goodenough, Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013)CrossRef J.B. Goodenough, Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013)CrossRef
2.
Zurück zum Zitat Y. Wang, R. Chen, T. Chen et al., Emerging non-lithium ion batteries. Energy Storage Mater. 4, 103–129 (2016)CrossRef Y. Wang, R. Chen, T. Chen et al., Emerging non-lithium ion batteries. Energy Storage Mater. 4, 103–129 (2016)CrossRef
3.
Zurück zum Zitat L. Fei, X. Li, Y. Wang et al., Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium–sulfur batteries. Adv. Mater. 27, 5936–5942 (2015)CrossRef L. Fei, X. Li, Y. Wang et al., Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium–sulfur batteries. Adv. Mater. 27, 5936–5942 (2015)CrossRef
4.
Zurück zum Zitat J.W. Choi, D. Aurbach et al., Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)CrossRef J.W. Choi, D. Aurbach et al., Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)CrossRef
5.
Zurück zum Zitat Y. Tang, Y. Zhang, X. Chen et al., Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015)CrossRef Y. Tang, Y. Zhang, X. Chen et al., Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015)CrossRef
6.
Zurück zum Zitat P.G. Bruce, S.A. Freunberger, J.M. Tarascon et al., Li-O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011)CrossRef P.G. Bruce, S.A. Freunberger, J.M. Tarascon et al., Li-O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011)CrossRef
7.
Zurück zum Zitat Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013)CrossRef Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013)CrossRef
8.
Zurück zum Zitat Q. Pang, X. Liang, L.F. Nazar et al., Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)CrossRef Q. Pang, X. Liang, L.F. Nazar et al., Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)CrossRef
9.
Zurück zum Zitat A. Manthiram, S.H. Chung, C. Zu, Lithium–sulfur batteries, progress and prospects. Adv. mater. 27, 1980–2006 (2015)CrossRef A. Manthiram, S.H. Chung, C. Zu, Lithium–sulfur batteries, progress and prospects. Adv. mater. 27, 1980–2006 (2015)CrossRef
10.
Zurück zum Zitat X. Liu, J.Q. Huang, Q. Zhang et al., Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017)CrossRef X. Liu, J.Q. Huang, Q. Zhang et al., Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017)CrossRef
11.
Zurück zum Zitat Z. Yuan, H.J. Peng, J.Q. Huang,et al., Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24, 6105–6112 (2014)CrossRef Z. Yuan, H.J. Peng, J.Q. Huang,et al., Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24, 6105–6112 (2014)CrossRef
12.
Zurück zum Zitat R. Zhang, N.W. Li, Q. Zhang et al., Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 4, 1600445 (2017)CrossRef R. Zhang, N.W. Li, Q. Zhang et al., Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 4, 1600445 (2017)CrossRef
13.
Zurück zum Zitat R. Cao, W. Xu, J.G. Zhang et al., Anodes for rechargeable lithium–sulfur batteries. Adv. Energy Mater. 5, 1402273 (2015)CrossRef R. Cao, W. Xu, J.G. Zhang et al., Anodes for rechargeable lithium–sulfur batteries. Adv. Energy Mater. 5, 1402273 (2015)CrossRef
14.
Zurück zum Zitat R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 5, 1500408 (2015)CrossRef R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 5, 1500408 (2015)CrossRef
15.
Zurück zum Zitat W. Kang, N. Deng, B. Cheng et al., A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale 8, 16541–16588 (2016)CrossRef W. Kang, N. Deng, B. Cheng et al., A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale 8, 16541–16588 (2016)CrossRef
16.
Zurück zum Zitat A. Manthiram, Y. Fu, Y.S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)CrossRef A. Manthiram, Y. Fu, Y.S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)CrossRef
17.
Zurück zum Zitat A. Manthiram, Y. Fu, Y.S. Su et al., Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)CrossRef A. Manthiram, Y. Fu, Y.S. Su et al., Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)CrossRef
18.
Zurück zum Zitat Y.C. Jeong, J.H. Kim, S.J. Yang et al., Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Funct. Mater. 28, 1707411 (2018)CrossRef Y.C. Jeong, J.H. Kim, S.J. Yang et al., Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Funct. Mater. 28, 1707411 (2018)CrossRef
19.
Zurück zum Zitat L. Wang, Y. Ye, R. Chen et al., Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28, 1800919 (2018)CrossRef L. Wang, Y. Ye, R. Chen et al., Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28, 1800919 (2018)CrossRef
20.
Zurück zum Zitat J. Song, M.L. Gordin, D. Wang et al., Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)CrossRef J. Song, M.L. Gordin, D. Wang et al., Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)CrossRef
21.
Zurück zum Zitat J. Schuster, G. He, L.F. Nazar et al., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012)CrossRef J. Schuster, G. He, L.F. Nazar et al., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012)CrossRef
22.
Zurück zum Zitat Y. Yan, Y. Wei, Y. Xu et al., Activated porous carbon materials with ultrahigh specific surface area derived from banana peels for high-performance lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 29, 11325–11335 (2018) Y. Yan, Y. Wei, Y. Xu et al., Activated porous carbon materials with ultrahigh specific surface area derived from banana peels for high-performance lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 29, 11325–11335 (2018)
23.
Zurück zum Zitat S.-H. Chung, P. Han, A. Manthiram et al., Electrochemically stable rechargeable lithium–sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 5, 1500738 (2015)CrossRef S.-H. Chung, P. Han, A. Manthiram et al., Electrochemically stable rechargeable lithium–sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 5, 1500738 (2015)CrossRef
24.
Zurück zum Zitat J. Xiao, H. Wang, H. Zhao et al., N-doped carbon nanotubes as cathode material in Li–S batteries. J. Mater. Sci.: Mater. Electron. 26, 7895–7900 (2015) J. Xiao, H. Wang, H. Zhao et al., N-doped carbon nanotubes as cathode material in Li–S batteries. J. Mater. Sci.: Mater. Electron. 26, 7895–7900 (2015)
25.
Zurück zum Zitat Y. Guo, J. Xiao, A. Jiang et al., Carbon nanotube doped active carbon coated separator for enhanced electrochemical performance of lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 28, 17453–17460 (2017) Y. Guo, J. Xiao, A. Jiang et al., Carbon nanotube doped active carbon coated separator for enhanced electrochemical performance of lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 28, 17453–17460 (2017)
26.
Zurück zum Zitat N. Deng, J. Ju, B. Cheng et al., CeF3-doped porous carbon nanofibers as sulfur immobilizers in cathode material for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10, 12626–12638 (2018)CrossRef N. Deng, J. Ju, B. Cheng et al., CeF3-doped porous carbon nanofibers as sulfur immobilizers in cathode material for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10, 12626–12638 (2018)CrossRef
27.
Zurück zum Zitat M. Wei, P. Yuan, G. Shao et al., Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium–sulfur batteries. Electrochim. Acta 178, 564–570 (2015)CrossRef M. Wei, P. Yuan, G. Shao et al., Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium–sulfur batteries. Electrochim. Acta 178, 564–570 (2015)CrossRef
28.
Zurück zum Zitat Y. Qiu, G. Rong, Y. Cui et al., Highly nitridated graphene-Li2S cathodes with stable modulated cycles. Adv. Energy Mater. 5, 1501369 (2015)CrossRef Y. Qiu, G. Rong, Y. Cui et al., Highly nitridated graphene-Li2S cathodes with stable modulated cycles. Adv. Energy Mater. 5, 1501369 (2015)CrossRef
29.
Zurück zum Zitat X. Geng, R. Yi, L. Yang et al., Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high performance lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 29, 10071–10081 (2018) X. Geng, R. Yi, L. Yang et al., Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high performance lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 29, 10071–10081 (2018)
30.
Zurück zum Zitat C. Tang, B.Q. Li, Q. Zhang et al., CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 26, 577–585 (2016)CrossRef C. Tang, B.Q. Li, Q. Zhang et al., CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 26, 577–585 (2016)CrossRef
31.
Zurück zum Zitat H. Jiang, X.C. Liu, H. Deng et al., Metal-organic frameworks for high charge-discharge rates in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 3916–3921 (2018)CrossRef H. Jiang, X.C. Liu, H. Deng et al., Metal-organic frameworks for high charge-discharge rates in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 3916–3921 (2018)CrossRef
32.
Zurück zum Zitat J. Song, J. Zheng, Y. Lin et al., Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon 128, 63–69 (2018)CrossRef J. Song, J. Zheng, Y. Lin et al., Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon 128, 63–69 (2018)CrossRef
33.
Zurück zum Zitat W. Cai, G. Li, K. Zhang et al., Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1704865–1704875 (2018)CrossRef W. Cai, G. Li, K. Zhang et al., Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1704865–1704875 (2018)CrossRef
34.
Zurück zum Zitat L. Ni, G. Zhao, G. Diao et al., Dual core-shell-structured S@C@MnO2 nanocomposite for highly stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 34793–34803 (2017)CrossRef L. Ni, G. Zhao, G. Diao et al., Dual core-shell-structured S@C@MnO2 nanocomposite for highly stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 34793–34803 (2017)CrossRef
35.
Zurück zum Zitat J. Zhang, Z. Li, X.W. Lou et al., Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 10944–10948 (2018)CrossRef J. Zhang, Z. Li, X.W. Lou et al., Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 10944–10948 (2018)CrossRef
36.
Zurück zum Zitat J. Zhang, H. Hu, X.W. Lou et al., Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55, 3982–3986 (2016)CrossRef J. Zhang, H. Hu, X.W. Lou et al., Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55, 3982–3986 (2016)CrossRef
37.
Zurück zum Zitat Z. Li, B.Y. Guan, X.W. Lou et al., A compact nanoconfined sulfur cathode for high-performance lithium–sulfur batteries. Joule 1, 576–587 (2017)CrossRef Z. Li, B.Y. Guan, X.W. Lou et al., A compact nanoconfined sulfur cathode for high-performance lithium–sulfur batteries. Joule 1, 576–587 (2017)CrossRef
38.
Zurück zum Zitat K. Kim, P.J. Kim, J.P. Youngblood et al., Surface functionalization of carbon architecture with nano-MnO2 for effective polysulfide confinement in lithium–sulfur batteries. ChemSusChem 11, 2375–2381 (2018)CrossRef K. Kim, P.J. Kim, J.P. Youngblood et al., Surface functionalization of carbon architecture with nano-MnO2 for effective polysulfide confinement in lithium–sulfur batteries. ChemSusChem 11, 2375–2381 (2018)CrossRef
39.
Zurück zum Zitat L. Zhang, S. Zhang, H. Jiu et al., Porous hollow spherical Mg0.6Ni0.4O/S composite as cathode material for Li–S batteries. J. Alloys Compd. 749, 594–598 (2018)CrossRef L. Zhang, S. Zhang, H. Jiu et al., Porous hollow spherical Mg0.6Ni0.4O/S composite as cathode material for Li–S batteries. J. Alloys Compd. 749, 594–598 (2018)CrossRef
40.
Zurück zum Zitat X. Chen, H.-J. Peng, R. Zhang et al., An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries, S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2, 795–801 (2017)CrossRef X. Chen, H.-J. Peng, R. Zhang et al., An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries, S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2, 795–801 (2017)CrossRef
41.
Zurück zum Zitat Q. Pang, X. Liang, L.F. Nazar et al., Review-The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium–sulfur batteries. J. Electrochem. Soc. 162, A2567–A2576 (2015)CrossRef Q. Pang, X. Liang, L.F. Nazar et al., Review-The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium–sulfur batteries. J. Electrochem. Soc. 162, A2567–A2576 (2015)CrossRef
42.
Zurück zum Zitat X. Tao, J. Wang, Y. Cui et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016)CrossRef X. Tao, J. Wang, Y. Cui et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016)CrossRef
43.
Zurück zum Zitat J. Zhou, N. Lin, Y. Qian et al., Synthesis of S/CoS2 nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium–sulfur batteries. Electrochim. Acta 218, 243–251 (2016)CrossRef J. Zhou, N. Lin, Y. Qian et al., Synthesis of S/CoS2 nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium–sulfur batteries. Electrochim. Acta 218, 243–251 (2016)CrossRef
44.
Zurück zum Zitat H. Xu, A. Manthiram, Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium–sulfur batteries. Nano Energy 33, 124–129 (2017)CrossRef H. Xu, A. Manthiram, Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium–sulfur batteries. Nano Energy 33, 124–129 (2017)CrossRef
45.
Zurück zum Zitat T. Chen, L. Ma, Z. Jin et al., Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017)CrossRef T. Chen, L. Ma, Z. Jin et al., Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017)CrossRef
46.
Zurück zum Zitat H. Lin, L. Yang, J.Y. Lee et al., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10, 1476–1486 (2017)CrossRef H. Lin, L. Yang, J.Y. Lee et al., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10, 1476–1486 (2017)CrossRef
47.
Zurück zum Zitat S.S. Zhang, D.T. Tran, Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries. J. Mater. Chem. A 4, 4371–4374 (2016)CrossRef S.S. Zhang, D.T. Tran, Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries. J. Mater. Chem. A 4, 4371–4374 (2016)CrossRef
48.
Zurück zum Zitat T. Chen, Z. Zhang, Z. Jin et al., Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc. 139, 12710–12715 (2017)CrossRef T. Chen, Z. Zhang, Z. Jin et al., Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc. 139, 12710–12715 (2017)CrossRef
49.
Zurück zum Zitat X. Hong, S. Li, F. Li et al., Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium–sulfur batteries. J. Alloys Compd. 749, 586–593 (2018)CrossRef X. Hong, S. Li, F. Li et al., Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium–sulfur batteries. J. Alloys Compd. 749, 586–593 (2018)CrossRef
50.
Zurück zum Zitat W. Tong, Y. Huang, J. Zong et al., Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium–sulfur batteries. J. Alloys Compd. 731, 964–970 (2018)CrossRef W. Tong, Y. Huang, J. Zong et al., Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium–sulfur batteries. J. Alloys Compd. 731, 964–970 (2018)CrossRef
51.
Zurück zum Zitat Z. Li, X. Li, W. Li et al., Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium–sulfur battery with improved cyclic stability. J. Power Sources 334, 23–30 (2016)CrossRef Z. Li, X. Li, W. Li et al., Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium–sulfur battery with improved cyclic stability. J. Power Sources 334, 23–30 (2016)CrossRef
52.
Zurück zum Zitat S.T. Seyyedin, M.R. Yaftian, M.R. Sovizi, Cobalt oxyhydroxide/graphene oxide nanocomposite for amelioration of electrochemical performance of lithium/sulfur batteries. J. Solid State Electrochem. 21, 649–656 (2017)CrossRef S.T. Seyyedin, M.R. Yaftian, M.R. Sovizi, Cobalt oxyhydroxide/graphene oxide nanocomposite for amelioration of electrochemical performance of lithium/sulfur batteries. J. Solid State Electrochem. 21, 649–656 (2017)CrossRef
53.
Zurück zum Zitat Y. Liu, G. Feng, B. Zhong et al., Employing MnO as multifunctional polysulfide reservoirs for enhanced-performance Li–S batteries. J. Alloys Compd. 748, 100–110 (2018)CrossRef Y. Liu, G. Feng, B. Zhong et al., Employing MnO as multifunctional polysulfide reservoirs for enhanced-performance Li–S batteries. J. Alloys Compd. 748, 100–110 (2018)CrossRef
Metadaten
Titel
Urchin-like NiCo2S4 infused sulfur as cathode for lithium–sulfur battery
verfasst von
Lingshan Wu
Shuihua Tang
Renjie Qu
Publikationsdatum
26.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0281-9

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Science: Materials in Electronics 1/2019 Zur Ausgabe

Neuer Inhalt