Skip to main content
Erschienen in: Journal of Materials Science 24/2019

13.09.2019 | Materials for life sciences

Urease adsorption immobilization on ionic liquid-like macroporous polymeric support

verfasst von: Hongjin Kim, Fatima Hassouna, František Muzika, Merve Arabacı, Dušan Kopecký, Ivona Sedlářová, Miroslav Šoóš

Erschienen in: Journal of Materials Science | Ausgabe 24/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we report the synthesis and application of polymeric macroporous materials functionalized with ionic liquid (IL)-like moieties to serve as a support for enzyme immobilization. The method was based on bottom-up approach, where poly(styrene–divinylbenzene) (PS–DVB) nanoparticles were used as building blocks to form porous structures. Surface functionalization was done by introducing 1-butyl imidazole into the PS–DVB support to form IL-like imidazolium, which was consequently used for enzyme adsorption immobilization on the porous surface. To demonstrate activity of immobilized enzyme, hydrolysis of urea catalyzed by Jack bean urease was used as a model reaction. The enzymatic activity of the urease to convert urea solution into carbon dioxide (hydrocarbonates in water solution) and ammonia under acidic conditions were monitored both by measuring changes in pH and by a color change in cresol red pH indicator. The immobilized urease was able to provide hydrolysis of urea solution for 30 days while maintaining its activity over 100% compared to free enzyme solution. The activity of freshly immobilized enzyme was increased up to 285% compared to free urease solution under acidic conditions, which is caused by an acidic shift of activity–pH bell-shaped curve. Prepared porous material with immobilized urease was able to undergo four consequent cycles over the period of 4 days with only 15% decrease in activity. Overall, the results indicated that the polymeric support is well suitable to combine the advantages of macroporous material with IL-like surface moieties for enzyme immobilization and its consequent application in bio-catalytic reactions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hentze H-P, Antonietti M (2008) Porous polymers and resins. Wiley-VCH Verlag GmbH, Weinheim Hentze H-P, Antonietti M (2008) Porous polymers and resins. Wiley-VCH Verlag GmbH, Weinheim
2.
Zurück zum Zitat Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779CrossRef Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779CrossRef
3.
Zurück zum Zitat Sherrington DC (1998) Preparation, structure and morphology of polymer supports. Chem Commun 21:2275–2286CrossRef Sherrington DC (1998) Preparation, structure and morphology of polymer supports. Chem Commun 21:2275–2286CrossRef
4.
Zurück zum Zitat Lv Y, Lin Z, Tan T, Svec F (2014) Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles. Biotechnol Bioeng 111:50–58CrossRef Lv Y, Lin Z, Tan T, Svec F (2014) Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles. Biotechnol Bioeng 111:50–58CrossRef
5.
Zurück zum Zitat Urban J, Svec F, Fréchet JMJ (2012) A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters. Biotechnol Bioeng 109:371–380CrossRef Urban J, Svec F, Fréchet JMJ (2012) A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters. Biotechnol Bioeng 109:371–380CrossRef
6.
Zurück zum Zitat Izquierdo DF, Yates M, Lozano P, Burguete MI, García-Verdugo E, Luis SV (2014) Macroporous polymers tailored as supports for large biomolecules: ionic liquids as porogenic solvents and as surface modifiers. React Funct Polym 85:20–27CrossRef Izquierdo DF, Yates M, Lozano P, Burguete MI, García-Verdugo E, Luis SV (2014) Macroporous polymers tailored as supports for large biomolecules: ionic liquids as porogenic solvents and as surface modifiers. React Funct Polym 85:20–27CrossRef
7.
Zurück zum Zitat Garcia-Diego C, Cuellar J (2005) Synthesis of macroporous poly(styrene-co-divinylbenzene) microparticles using n-heptane as the porogen: quantitative effects of the DVB concentration and the monomeric fraction on their structural characteristics. Ind Eng Chem Res 44:8237–8247CrossRef Garcia-Diego C, Cuellar J (2005) Synthesis of macroporous poly(styrene-co-divinylbenzene) microparticles using n-heptane as the porogen: quantitative effects of the DVB concentration and the monomeric fraction on their structural characteristics. Ind Eng Chem Res 44:8237–8247CrossRef
8.
Zurück zum Zitat Afeyan NB, Fulton SP, Gordon NF, Mazsaroff I, Várady L, Regnier FE (1990) Perfusion chromatography: an approach to purifying biomolecules. Bio/Technology 8:203–206 Afeyan NB, Fulton SP, Gordon NF, Mazsaroff I, Várady L, Regnier FE (1990) Perfusion chromatography: an approach to purifying biomolecules. Bio/Technology 8:203–206
9.
Zurück zum Zitat Wang QC, Hosoya K, Svec F, Frechet JMJ (1992) Polymeric porogens used in the preparation of novel monodispersed macroporous polymeric separation media for high-performance liquid chromatography. Anal Chem 64:1232–1238CrossRef Wang QC, Hosoya K, Svec F, Frechet JMJ (1992) Polymeric porogens used in the preparation of novel monodispersed macroporous polymeric separation media for high-performance liquid chromatography. Anal Chem 64:1232–1238CrossRef
10.
Zurück zum Zitat Perrier-Cornet R, Héroguez V, Thienpont A, Babot O, Toupance T (2008) Functional crosslinked polymer particles synthesized by precipitation polymerization for liquid chromatography. J Chromatogr A 1179:2–8CrossRef Perrier-Cornet R, Héroguez V, Thienpont A, Babot O, Toupance T (2008) Functional crosslinked polymer particles synthesized by precipitation polymerization for liquid chromatography. J Chromatogr A 1179:2–8CrossRef
11.
Zurück zum Zitat Svec F, Frechet JMJ (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273:205–211CrossRef Svec F, Frechet JMJ (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273:205–211CrossRef
12.
Zurück zum Zitat Luis SV, Garcia-Verdugo E (eds) (2009) Chemical reactions and processes under flow conditions. Royal Society of Chemistry, London Luis SV, Garcia-Verdugo E (eds) (2009) Chemical reactions and processes under flow conditions. Royal Society of Chemistry, London
13.
Zurück zum Zitat Shih Y-H, Singco B, Liu W-L, Hsu C-H, Huang H-Y (2011) A rapid synthetic method for organic polymer-based monoliths in a room temperature ionic liquid medium via microwave-assisted vinylization and polymerization. Green Chem 13:296–299CrossRef Shih Y-H, Singco B, Liu W-L, Hsu C-H, Huang H-Y (2011) A rapid synthetic method for organic polymer-based monoliths in a room temperature ionic liquid medium via microwave-assisted vinylization and polymerization. Green Chem 13:296–299CrossRef
14.
Zurück zum Zitat Singco B, Lin C-L, Cheng Y-J, Shih Y-H, Huang H-Y (2012) Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application. Anal Chim Acta 746:123–133CrossRef Singco B, Lin C-L, Cheng Y-J, Shih Y-H, Huang H-Y (2012) Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application. Anal Chim Acta 746:123–133CrossRef
15.
Zurück zum Zitat Kubisa P (2009) Ionic liquids as solvents for polymerization processes—progress and challenges. Prog Polym Sci 34:1333–1347CrossRef Kubisa P (2009) Ionic liquids as solvents for polymerization processes—progress and challenges. Prog Polym Sci 34:1333–1347CrossRef
16.
Zurück zum Zitat Erdmenger T, Guerrero-Sanchez C, Vitz J, Hoogenboom R, Schubert US (2010) Recent developments in the utilization of green solvents in polymer chemistry. Chem Soc Rev 39:3317–3333CrossRef Erdmenger T, Guerrero-Sanchez C, Vitz J, Hoogenboom R, Schubert US (2010) Recent developments in the utilization of green solvents in polymer chemistry. Chem Soc Rev 39:3317–3333CrossRef
17.
Zurück zum Zitat Tripathi AK, Singh RK (2018) Immobilization induced molecular compression of ionic liquid in ordered mesoporous matrix. J Phys D Appl Phys 51:075301CrossRef Tripathi AK, Singh RK (2018) Immobilization induced molecular compression of ionic liquid in ordered mesoporous matrix. J Phys D Appl Phys 51:075301CrossRef
18.
Zurück zum Zitat Tripathi AK, Verma YL, Shalu, Singh VK, Balo L, Gupta H, Singh SK, Singh VK (2017) Quasi solid-state electrolytes based on ionic liquid (IL) and ordered mesoporous matrix MCM-41 for supercapacitor application. J Solid State Electrochem 21:3365–3371CrossRef Tripathi AK, Verma YL, Shalu, Singh VK, Balo L, Gupta H, Singh SK, Singh VK (2017) Quasi solid-state electrolytes based on ionic liquid (IL) and ordered mesoporous matrix MCM-41 for supercapacitor application. J Solid State Electrochem 21:3365–3371CrossRef
19.
Zurück zum Zitat Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef
20.
Zurück zum Zitat Tripathi AK, Singh RK (2018) Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid–liquid electrolytes for lithium batteries. J Energy Storage 15:283–291CrossRef Tripathi AK, Singh RK (2018) Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid–liquid electrolytes for lithium batteries. J Energy Storage 15:283–291CrossRef
21.
Zurück zum Zitat Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12CrossRef Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12CrossRef
22.
Zurück zum Zitat Marti N, Quattrini F, Butte A, Morbidelli M (2005) Production of polymeric materials with controlled pore structure: the ‘‘Reactive gelation’’ process. Macromol Mater Eng 290:221–229CrossRef Marti N, Quattrini F, Butte A, Morbidelli M (2005) Production of polymeric materials with controlled pore structure: the ‘‘Reactive gelation’’ process. Macromol Mater Eng 290:221–229CrossRef
23.
Zurück zum Zitat Lamprou A, Köse I, Peña Aguirre Z, Storti G, Morbidelli M, Soos M (2014) Macroporous polymer particles via reactive gelation under shear: effect of primary particle properties and operating parameters. Langmuir 30:13970–13978CrossRef Lamprou A, Köse I, Peña Aguirre Z, Storti G, Morbidelli M, Soos M (2014) Macroporous polymer particles via reactive gelation under shear: effect of primary particle properties and operating parameters. Langmuir 30:13970–13978CrossRef
24.
Zurück zum Zitat Lamprou A, Köse I, Storti G, Morbidelli M, Soos M (2014) Synthesis of macroporous polymer particles using reactive gelation under shear. Langmuir 30:6946–6953CrossRef Lamprou A, Köse I, Storti G, Morbidelli M, Soos M (2014) Synthesis of macroporous polymer particles using reactive gelation under shear. Langmuir 30:6946–6953CrossRef
25.
Zurück zum Zitat Meakin P (1988) Fractal aggregates. Adv Colloid Interface Sci 28:249–331CrossRef Meakin P (1988) Fractal aggregates. Adv Colloid Interface Sci 28:249–331CrossRef
26.
Zurück zum Zitat Brand B, Morbidelli M, Soos M (2015) Shear-induced reactive gelation. Langmuir 31:12727–12735CrossRef Brand B, Morbidelli M, Soos M (2015) Shear-induced reactive gelation. Langmuir 31:12727–12735CrossRef
27.
Zurück zum Zitat Bechtle M, Butte A, Storti G, Morbidelli M (2010) Preparation of macroporous methacrylate-based monoliths for chromatographic applications by the reactive gelation process. J Chromatogr A 1217:4675–4681CrossRef Bechtle M, Butte A, Storti G, Morbidelli M (2010) Preparation of macroporous methacrylate-based monoliths for chromatographic applications by the reactive gelation process. J Chromatogr A 1217:4675–4681CrossRef
28.
Zurück zum Zitat de Neuville BC, Lamprou A, Morbidelli M, Soos M (2014) Perfusive ion-exchange chromatographic materials with high capacity. J Chromatogr A 1374:180–188CrossRef de Neuville BC, Lamprou A, Morbidelli M, Soos M (2014) Perfusive ion-exchange chromatographic materials with high capacity. J Chromatogr A 1374:180–188CrossRef
29.
Zurück zum Zitat Lamprou A, Gavriilidou A-F-M, Storti G, Soos M, Morbidelli M (2015) Application of polymeric macroporous supports for temperature-responsive chromatography of pharmaceuticals. J Chromatogr A 1407:90–99CrossRef Lamprou A, Gavriilidou A-F-M, Storti G, Soos M, Morbidelli M (2015) Application of polymeric macroporous supports for temperature-responsive chromatography of pharmaceuticals. J Chromatogr A 1407:90–99CrossRef
30.
Zurück zum Zitat Cui S, Zhou Q-W, Wang X-L et al (2017) Immobilization of lipase onto N-succinyl-chitosan beads and its application in the enrichment of polyunsaturated fatty acids in fish oil. J Food Biochem 41:e12395CrossRef Cui S, Zhou Q-W, Wang X-L et al (2017) Immobilization of lipase onto N-succinyl-chitosan beads and its application in the enrichment of polyunsaturated fatty acids in fish oil. J Food Biochem 41:e12395CrossRef
31.
Zurück zum Zitat Rath P, Tripathi P, Kayastha AM (2012) Immobilization of α-amylase from germinated mung beans (Vigna radiata) on Fuller’s earth by adsorption. J Plant Biochem Biotechnol 21:229–234CrossRef Rath P, Tripathi P, Kayastha AM (2012) Immobilization of α-amylase from germinated mung beans (Vigna radiata) on Fuller’s earth by adsorption. J Plant Biochem Biotechnol 21:229–234CrossRef
32.
Zurück zum Zitat Lassouane F, Aït-Amar H, Amrani S, Rodriguez-Couto S (2019) A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresour Technol 271:360–367CrossRef Lassouane F, Aït-Amar H, Amrani S, Rodriguez-Couto S (2019) A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresour Technol 271:360–367CrossRef
33.
Zurück zum Zitat Rojas-Mercado AS, Moreno-Cortez IE, Lucio-Porto R, Pavón LL (2018) Encapsulation and immobilization of ficin extract in electrospun polymeric nanofibers. Int J Biol Macromol 118:2287–2295CrossRef Rojas-Mercado AS, Moreno-Cortez IE, Lucio-Porto R, Pavón LL (2018) Encapsulation and immobilization of ficin extract in electrospun polymeric nanofibers. Int J Biol Macromol 118:2287–2295CrossRef
34.
Zurück zum Zitat Baysal Z, Aksoy E, Dolak İ, Ersöz A, Say R (2018) Adsorption behaviours of lysozyme onto poly-hydroxyethyl methacrylate cryogels containing methacryloyl antipyrine-Ce(III). Int J Polym Mater Polym Biomater 67:199–204CrossRef Baysal Z, Aksoy E, Dolak İ, Ersöz A, Say R (2018) Adsorption behaviours of lysozyme onto poly-hydroxyethyl methacrylate cryogels containing methacryloyl antipyrine-Ce(III). Int J Polym Mater Polym Biomater 67:199–204CrossRef
35.
Zurück zum Zitat Zhao K, Cao X, Di Q et al (2017) Synthesis, characterization and optimization of a two-step immobilized lipase. Renew Energy 103:383–387CrossRef Zhao K, Cao X, Di Q et al (2017) Synthesis, characterization and optimization of a two-step immobilized lipase. Renew Energy 103:383–387CrossRef
36.
Zurück zum Zitat Weiss WF, Hodgdon TK, Kaler EW, Lenhoff AM, Roberts CJ (2007) Nonnative protein polymers: structure, morphology, and relation to nucleation and growth. Biophys J 93:4392–4403CrossRef Weiss WF, Hodgdon TK, Kaler EW, Lenhoff AM, Roberts CJ (2007) Nonnative protein polymers: structure, morphology, and relation to nucleation and growth. Biophys J 93:4392–4403CrossRef
37.
Zurück zum Zitat Grancic P, Illeova V, Polakovic M, Sefcik J (2012) Thermally induced inactivation and aggregation of urease: experiments and population balance modelling. Chem Eng Sci 70:14–21CrossRef Grancic P, Illeova V, Polakovic M, Sefcik J (2012) Thermally induced inactivation and aggregation of urease: experiments and population balance modelling. Chem Eng Sci 70:14–21CrossRef
38.
Zurück zum Zitat Cui J, Sun B, Lin T, Feng Y, Jia S (2018) Enzyme shielding by mesoporous organosilica shell on Fe3O4@silica yolk–shell nanospheres. Int J Biol Macromol 117:673–682CrossRef Cui J, Sun B, Lin T, Feng Y, Jia S (2018) Enzyme shielding by mesoporous organosilica shell on Fe3O4@silica yolk–shell nanospheres. Int J Biol Macromol 117:673–682CrossRef
39.
Zurück zum Zitat Pogorilyi RP, Goncharik VP, Kozhara LI, Zub YL (2008) Covalent immobilization of urease on polysiloxane matrices containing 3-aminopropyl and 3-mercaptopropyl groups. Appl Biochem Microbiol 44:561–565CrossRef Pogorilyi RP, Goncharik VP, Kozhara LI, Zub YL (2008) Covalent immobilization of urease on polysiloxane matrices containing 3-aminopropyl and 3-mercaptopropyl groups. Appl Biochem Microbiol 44:561–565CrossRef
40.
Zurück zum Zitat Zambelli B, Musiani F, Benini S, Ciurli S (2011) Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res 44:520–530CrossRef Zambelli B, Musiani F, Benini S, Ciurli S (2011) Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res 44:520–530CrossRef
41.
Zurück zum Zitat Wang S, Lee MH, Hausinger RP, Clark PA, Wilcox DE, Scott RA (1994) Structure of the dinuclear active site of urease. X-ray absorption spectroscopic study of native and 2-mercaptoethanol-inhibited bacterial and plant enzymes. Inorg Chem 33:1589–1593CrossRef Wang S, Lee MH, Hausinger RP, Clark PA, Wilcox DE, Scott RA (1994) Structure of the dinuclear active site of urease. X-ray absorption spectroscopic study of native and 2-mercaptoethanol-inhibited bacterial and plant enzymes. Inorg Chem 33:1589–1593CrossRef
42.
Zurück zum Zitat Nielsen JE, McCammon JA (2003) Calculating pKa values in enzyme active sites. Protein Sci Publ Protein Soc 12:1894–1901CrossRef Nielsen JE, McCammon JA (2003) Calculating pKa values in enzyme active sites. Protein Sci Publ Protein Soc 12:1894–1901CrossRef
43.
Zurück zum Zitat Yang D, Fan J, Cao F, Deng Z, Pojman JA, Ji L (2019) Immobilization adjusted clock reaction in the urea–urease–H+ reaction system. RSC Adv 9:3514–3519CrossRef Yang D, Fan J, Cao F, Deng Z, Pojman JA, Ji L (2019) Immobilization adjusted clock reaction in the urea–urease–H+ reaction system. RSC Adv 9:3514–3519CrossRef
44.
Zurück zum Zitat Hu G, Pojman JA, Scott SK, Wrobel MM, Taylor AF (2010) Base-catalyzed feedback in the urea–urease reaction. J Phys Chem B 114:14059–14063CrossRef Hu G, Pojman JA, Scott SK, Wrobel MM, Taylor AF (2010) Base-catalyzed feedback in the urea–urease reaction. J Phys Chem B 114:14059–14063CrossRef
45.
Zurück zum Zitat Bubanja IN, Bánsági T, Taylor AF (2018) Kinetics of the urea–urease clock reaction with urease immobilized in hydrogel beads. React Kinet Mech Catal 123:177–185CrossRef Bubanja IN, Bánsági T, Taylor AF (2018) Kinetics of the urea–urease clock reaction with urease immobilized in hydrogel beads. React Kinet Mech Catal 123:177–185CrossRef
46.
Zurück zum Zitat Hoare JP, Laidler KJ (1950) The molecular kinetics of the urea–urease system. II. The inhibition by products. J Am Chem Soc 72:2487–2489CrossRef Hoare JP, Laidler KJ (1950) The molecular kinetics of the urea–urease system. II. The inhibition by products. J Am Chem Soc 72:2487–2489CrossRef
47.
Zurück zum Zitat Marzadori C, Miletti S, Gessa C, Ciurli S (1998) Immobilization of jack bean urease on hydroxyapatite: urease immobilization in alkaline soils. Soil Biol Biochem 30:1485–1490CrossRef Marzadori C, Miletti S, Gessa C, Ciurli S (1998) Immobilization of jack bean urease on hydroxyapatite: urease immobilization in alkaline soils. Soil Biol Biochem 30:1485–1490CrossRef
48.
Zurück zum Zitat Zhou J, Cao J, Huang W et al (2013) Preparation and property of urease immobilization with cationic poly(4-vinylpyridine) functionalized colloidal particles. Chem Biochem Eng Q 27:431–437 Zhou J, Cao J, Huang W et al (2013) Preparation and property of urease immobilization with cationic poly(4-vinylpyridine) functionalized colloidal particles. Chem Biochem Eng Q 27:431–437
49.
Zurück zum Zitat de Brito AK, Nordi CSF, Caseli L (2015) Algal polysaccharides as matrices for the immobilization of urease in lipid ultrathin films studied with tensiometry and vibrational spectroscopy: physical–chemical properties and implications in the enzyme activity. Colloids Surf B Biointerfaces 135:639–645CrossRef de Brito AK, Nordi CSF, Caseli L (2015) Algal polysaccharides as matrices for the immobilization of urease in lipid ultrathin films studied with tensiometry and vibrational spectroscopy: physical–chemical properties and implications in the enzyme activity. Colloids Surf B Biointerfaces 135:639–645CrossRef
50.
Zurück zum Zitat Kirdeciler SK, Soy E, Öztürk S et al (2011) A novel urea conductometric biosensor based on zeolite immobilized urease. Talanta 85:1435–1441CrossRef Kirdeciler SK, Soy E, Öztürk S et al (2011) A novel urea conductometric biosensor based on zeolite immobilized urease. Talanta 85:1435–1441CrossRef
51.
Zurück zum Zitat Jia W, Wang B, Wang C, Sun H (2017) Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. J Environ Chem Eng 5:2107–2114CrossRef Jia W, Wang B, Wang C, Sun H (2017) Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. J Environ Chem Eng 5:2107–2114CrossRef
52.
Zurück zum Zitat Ispirli Doğaç Y, Deveci İ, Teke M, Mercimek B (2014) TiO2 beads and TiO2–chitosan beads for urease immobilization. Mater Sci Eng, C 42:429–435CrossRef Ispirli Doğaç Y, Deveci İ, Teke M, Mercimek B (2014) TiO2 beads and TiO2–chitosan beads for urease immobilization. Mater Sci Eng, C 42:429–435CrossRef
53.
Zurück zum Zitat Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I (2016) Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol 86:134–142CrossRef Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I (2016) Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol 86:134–142CrossRef
54.
Zurück zum Zitat Tang X, Liu S, Wang S, Zhang Q, Cheng Z (2014) Preparation of reversibly immobilized Jack bean urease on microchannel surface and application for enzyme inhibition assay. Microfluid Nanofluid 17:721–728CrossRef Tang X, Liu S, Wang S, Zhang Q, Cheng Z (2014) Preparation of reversibly immobilized Jack bean urease on microchannel surface and application for enzyme inhibition assay. Microfluid Nanofluid 17:721–728CrossRef
55.
Zurück zum Zitat Srivastava PK, Kayastha AM, Srinivasan (2001) Characterization of gelatin-immobilized pigeonpea urease and preparation of a new urea biosensor. Biotechnol Appl Biochem 34:55–62CrossRef Srivastava PK, Kayastha AM, Srinivasan (2001) Characterization of gelatin-immobilized pigeonpea urease and preparation of a new urea biosensor. Biotechnol Appl Biochem 34:55–62CrossRef
56.
Zurück zum Zitat Singh AK, Singh M, Verma N (2017) Extraction, purification, kinetic characterization and immobilization of urease from Bacillus sphaericus MTCC 5100. Biocatal Agric Biotechnol 12:341–347CrossRef Singh AK, Singh M, Verma N (2017) Extraction, purification, kinetic characterization and immobilization of urease from Bacillus sphaericus MTCC 5100. Biocatal Agric Biotechnol 12:341–347CrossRef
57.
Zurück zum Zitat de Melo JV, Cosnier S, Mousty C, Martelet C, Jaffrezic-Renault N (2002) Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn–Al layered double hydroxides). Anal Chem 74:4037–4043CrossRef de Melo JV, Cosnier S, Mousty C, Martelet C, Jaffrezic-Renault N (2002) Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn–Al layered double hydroxides). Anal Chem 74:4037–4043CrossRef
58.
Zurück zum Zitat Syu M-J, Chang Y-S (2009) Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix. Biosens Bioelectron 24:2671–2677CrossRef Syu M-J, Chang Y-S (2009) Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix. Biosens Bioelectron 24:2671–2677CrossRef
59.
Zurück zum Zitat Agelis G, Resvani A, Durdagi S et al (2012) The discovery of new potent non-peptide Angiotensin II AT1 receptor blockers: a concise synthesis, molecular docking studies and biological evaluation of N-substituted 5-butylimidazole derivatives. Eur J Med Chem 55:358–374CrossRef Agelis G, Resvani A, Durdagi S et al (2012) The discovery of new potent non-peptide Angiotensin II AT1 receptor blockers: a concise synthesis, molecular docking studies and biological evaluation of N-substituted 5-butylimidazole derivatives. Eur J Med Chem 55:358–374CrossRef
60.
Zurück zum Zitat Blesic M, Nimal Gunaratne HQ, Nockemann P, McCarron P, Seddon KR (2013) Controlled fragrance delivery in functionalised ionic liquid–enzyme systems. RSC Adv 3:329–333CrossRef Blesic M, Nimal Gunaratne HQ, Nockemann P, McCarron P, Seddon KR (2013) Controlled fragrance delivery in functionalised ionic liquid–enzyme systems. RSC Adv 3:329–333CrossRef
61.
Zurück zum Zitat Soos M, Lattuada M, Sefcik J, Morbidelli M (2009) Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering. J Phys Chem B 113:14962–14970CrossRef Soos M, Lattuada M, Sefcik J, Morbidelli M (2009) Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering. J Phys Chem B 113:14962–14970CrossRef
62.
Zurück zum Zitat Kerker M (1969) The scattering of light. Academic Press, New York Kerker M (1969) The scattering of light. Academic Press, New York
63.
Zurück zum Zitat Bohren DR, Huffman CF (1983) Absorption and scattering of light by small particles. Wiley-Interscience, New York Bohren DR, Huffman CF (1983) Absorption and scattering of light by small particles. Wiley-Interscience, New York
64.
Zurück zum Zitat Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687CrossRef Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687CrossRef
65.
Zurück zum Zitat Lin M, Lindsay HM, Weitz DA, Klein R, Ball RC, Meakin P (1990) Universal reaction-limited aggregation. Phys Rev A 41:2005–2020CrossRef Lin M, Lindsay HM, Weitz DA, Klein R, Ball RC, Meakin P (1990) Universal reaction-limited aggregation. Phys Rev A 41:2005–2020CrossRef
66.
Zurück zum Zitat Sandkühler P, Lattuada M, Wu H, Sefcik J, Morbidelli M (2005) Further insights into the universality of colloidal aggregation. Adv Colloid Interface Sci 113:65–83CrossRef Sandkühler P, Lattuada M, Wu H, Sefcik J, Morbidelli M (2005) Further insights into the universality of colloidal aggregation. Adv Colloid Interface Sci 113:65–83CrossRef
67.
Zurück zum Zitat Krajewska B, Ciurli S (2005) Jack bean (Canavalia ensiformis) urease. probing acid–base groups of the active site by pH variation. Plant Physiol Biochem 43:651–658CrossRef Krajewska B, Ciurli S (2005) Jack bean (Canavalia ensiformis) urease. probing acid–base groups of the active site by pH variation. Plant Physiol Biochem 43:651–658CrossRef
Metadaten
Titel
Urease adsorption immobilization on ionic liquid-like macroporous polymeric support
verfasst von
Hongjin Kim
Fatima Hassouna
František Muzika
Merve Arabacı
Dušan Kopecký
Ivona Sedlářová
Miroslav Šoóš
Publikationsdatum
13.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03980-0

Weitere Artikel der Ausgabe 24/2019

Journal of Materials Science 24/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.