Skip to main content
Erschienen in: Hydrogeology Journal 5/2017

04.04.2017 | Technical Note

Using basic metrics to analyze high-resolution temperature data in the subsurface

verfasst von: Margaret Shanafield, James L. McCallum, Peter G. Cook, Saskia Noorduijn

Erschienen in: Hydrogeology Journal | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25–0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amoozegar A, Warrick A (1986) Hydraulic conductivity of saturated soils: field methods. In: Methods of soil analysis, part 1: physical and mineralogical methods. American Society of Agronomy, Madison, WI, pp 735–770 Amoozegar A, Warrick A (1986) Hydraulic conductivity of saturated soils: field methods. In: Methods of soil analysis, part 1: physical and mineralogical methods. American Society of Agronomy, Madison, WI, pp 735–770
Zurück zum Zitat Becker MW, Bauer B, Hutchinson A (2013) Measuring artificial recharge with fiber optic distributed temperature sensing. Groundwater 51:670–678CrossRef Becker MW, Bauer B, Hutchinson A (2013) Measuring artificial recharge with fiber optic distributed temperature sensing. Groundwater 51:670–678CrossRef
Zurück zum Zitat Bosch D, West L (1998) Hydraulic conductivity variability for two sandy soils. Soil Sci Soc Am J 62:90–98CrossRef Bosch D, West L (1998) Hydraulic conductivity variability for two sandy soils. Soil Sci Soc Am J 62:90–98CrossRef
Zurück zum Zitat Briggs MA, Lautz LK, McKenzie JM, Gordon RP, Hare DK (2012) Using high‐resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour Res 48:W02527CrossRef Briggs MA, Lautz LK, McKenzie JM, Gordon RP, Hare DK (2012) Using high‐resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour Res 48:W02527CrossRef
Zurück zum Zitat Curtis A, Kyle P (2011) Geothermal point sources identified in a fumarolic ice cave on Erebus volcano, Antarctica using fiber optic distributed temperature sensing. Geophys Res Lett 38:L16802CrossRef Curtis A, Kyle P (2011) Geothermal point sources identified in a fumarolic ice cave on Erebus volcano, Antarctica using fiber optic distributed temperature sensing. Geophys Res Lett 38:L16802CrossRef
Zurück zum Zitat Fairclough MC (2010) Coompana 1:250 000 geology map sheet SH 52–15. Geol. Surv. of South Australia, Adelaide, SA, South Australia Fairclough MC (2010) Coompana 1:250 000 geology map sheet SH 52–15. Geol. Surv. of South Australia, Adelaide, SA, South Australia
Zurück zum Zitat FAO (2002) Crops and drops: making the best use of water for agriculture. FAO, Rome, Italy FAO (2002) Crops and drops: making the best use of water for agriculture. FAO, Rome, Italy
Zurück zum Zitat Hausner MB, Suárez F, Glander KE, Giesen N, Selker JS, Tyler SW (2011) Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data. Sensors 11:10859–10879CrossRef Hausner MB, Suárez F, Glander KE, Giesen N, Selker JS, Tyler SW (2011) Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data. Sensors 11:10859–10879CrossRef
Zurück zum Zitat Hausner MB, Wilson KP, Gaines DB, Tyler SW (2012) Interpreting seasonal convective mixing in Devils Hole, Death Valley National Park, from temperature profiles observed by fiber‐optic distributed temperature sensing. Water Resour Res 48(5). doi:10.1029/2011WR010972 Hausner MB, Wilson KP, Gaines DB, Tyler SW (2012) Interpreting seasonal convective mixing in Devils Hole, Death Valley National Park, from temperature profiles observed by fiber‐optic distributed temperature sensing. Water Resour Res 48(5). doi:10.​1029/​2011WR010972
Zurück zum Zitat Lapham WW (1989) Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geol Surv Water Suppl Pap 2337 Lapham WW (1989) Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geol Surv Water Suppl Pap 2337
Zurück zum Zitat Lowry CS, Walker JF, Hunt RJ, Anderson MP (2007) Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour Res 43(10). doi:10.1029/2007WR006145 Lowry CS, Walker JF, Hunt RJ, Anderson MP (2007) Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour Res 43(10). doi:10.​1029/​2007WR006145
Zurück zum Zitat Małoszewski P, Wachniew P, Czupryński P (2006) Study of hydraulic parameters in heterogeneous gravel beds: constructed wetland in Nowa Słupia (Poland). J Hydrol 331:630–642CrossRef Małoszewski P, Wachniew P, Czupryński P (2006) Study of hydraulic parameters in heterogeneous gravel beds: constructed wetland in Nowa Słupia (Poland). J Hydrol 331:630–642CrossRef
Zurück zum Zitat Martin CA, Gates TK (2014) Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices. J Hydrol 517:746–761CrossRef Martin CA, Gates TK (2014) Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices. J Hydrol 517:746–761CrossRef
Zurück zum Zitat Mawer C, Parsekian A, Pidlisecky A, Knight R (2016) Characterizing heterogeneity in infiltration rates during managed aquifer recharge. Groundwater 54(6):818–829 Mawer C, Parsekian A, Pidlisecky A, Knight R (2016) Characterizing heterogeneity in infiltration rates during managed aquifer recharge. Groundwater 54(6):818–829
Zurück zum Zitat Noorduijn SL, Shanafield M, Trigg MA, Harrington GA, Cook PG, Peeters L (2014) Estimating seepage flux from ephemeral stream channels using surface and ground‐water level data. Water Resour Res 50:1474–1489. doi:10.1002/2012WR013424 CrossRef Noorduijn SL, Shanafield M, Trigg MA, Harrington GA, Cook PG, Peeters L (2014) Estimating seepage flux from ephemeral stream channels using surface and ground‐water level data. Water Resour Res 50:1474–1489. doi:10.​1002/​2012WR013424 CrossRef
Zurück zum Zitat Schmidt CM, Fisher AT, Racz AJ, Lockwood BS, Huertos ML (2011) Linking denitrification and infiltration rates during managed groundwater recharge. Environ Sci Technol 45:9634–9640CrossRef Schmidt CM, Fisher AT, Racz AJ, Lockwood BS, Huertos ML (2011) Linking denitrification and infiltration rates during managed groundwater recharge. Environ Sci Technol 45:9634–9640CrossRef
Zurück zum Zitat Shanafield M, Niswonger RG, Prudic DE, Pohll G, Susfalk R, Panday S (2014) A method for estimating spatially variable seepage and hydraulic conductivity in channels with very mild slopes. Hydrol Process 28:51–61CrossRef Shanafield M, Niswonger RG, Prudic DE, Pohll G, Susfalk R, Panday S (2014) A method for estimating spatially variable seepage and hydraulic conductivity in channels with very mild slopes. Hydrol Process 28:51–61CrossRef
Zurück zum Zitat Shanafield M, McCallum JL, Cook PG, Noorduijn S (2016) Variations on thermal transport modelling of subsurface temperatures using high resolution data. Adv Water Resour 89:1–9CrossRef Shanafield M, McCallum JL, Cook PG, Noorduijn S (2016) Variations on thermal transport modelling of subsurface temperatures using high resolution data. Adv Water Resour 89:1–9CrossRef
Zurück zum Zitat Stallman RW (1963) Computation of ground-water velocity from temperature data. US Geol Surv Water Suppl Pap 1544-H, pp 36–46 Stallman RW (1963) Computation of ground-water velocity from temperature data. US Geol Surv Water Suppl Pap 1544-H, pp 36–46
Zurück zum Zitat Stallman RW (1965) Steady one‐dimensional fluid flow in a semi‐infinite porous medium with sinusoidal surface temperature. J Geophys Res 70:2821–2827CrossRef Stallman RW (1965) Steady one‐dimensional fluid flow in a semi‐infinite porous medium with sinusoidal surface temperature. J Geophys Res 70:2821–2827CrossRef
Zurück zum Zitat Steele‐Dunne S, Rutten M, Krzeminska D, Hausner M, Tyler S, Selker J, Bogaard T, Van de Giesen N (2010) Feasibility of soil moisture estimation using passive distributed temperature sensing. Water Resour Res 46. doi: 10.1029/2009WR008272 Steele‐Dunne S, Rutten M, Krzeminska D, Hausner M, Tyler S, Selker J, Bogaard T, Van de Giesen N (2010) Feasibility of soil moisture estimation using passive distributed temperature sensing. Water Resour Res 46. doi: 10.​1029/​2009WR008272
Zurück zum Zitat Suárez F, Hausner MB, Dozier J, Selker JS, Tyler SW (2011) Heat transfer in the environment: development and use of fiber-optic distributed temperature sensing. Develop Heat Transfer. doi:10.5772/19474 Suárez F, Hausner MB, Dozier J, Selker JS, Tyler SW (2011) Heat transfer in the environment: development and use of fiber-optic distributed temperature sensing. Develop Heat Transfer. doi:10.​5772/​19474
Zurück zum Zitat Susfalk R, Sada D, Martin C, Young MH, Gates T, Rosamond C, Mihevc T, Arrowood T, Shanafield M, Epstein B (2008) Evaluation of linear anionic polyacrylamide (LA-PAM) application to water delivery canals for seepage reduction. DHS Publ. no. 41245, Desert Research Institute, Reno, NV Susfalk R, Sada D, Martin C, Young MH, Gates T, Rosamond C, Mihevc T, Arrowood T, Shanafield M, Epstein B (2008) Evaluation of linear anionic polyacrylamide (LA-PAM) application to water delivery canals for seepage reduction. DHS Publ. no. 41245, Desert Research Institute, Reno, NV
Zurück zum Zitat Tanji KK, Kielen NC (2002) Agricultural drainage water management in arid and semi-arid areas. FAO Irrigation and Drainage Paper 61, FAO, Rome Tanji KK, Kielen NC (2002) Agricultural drainage water management in arid and semi-arid areas. FAO Irrigation and Drainage Paper 61, FAO, Rome
Zurück zum Zitat Tyler SW, Burak SA, McNamara JP, Lamontagne A, Selker JS, Dozier J (2008) Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors. J Glaciol 54:673–679CrossRef Tyler SW, Burak SA, McNamara JP, Lamontagne A, Selker JS, Dozier J (2008) Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors. J Glaciol 54:673–679CrossRef
Zurück zum Zitat Vogt T, Schneider P, Hahn-Woernle L, Cirpka OA (2010) Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J Hydrol 380:154–164CrossRef Vogt T, Schneider P, Hahn-Woernle L, Cirpka OA (2010) Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J Hydrol 380:154–164CrossRef
Zurück zum Zitat Westhoff M, Savenije H, Luxemburg W, Stelling G, Van de Giesen N, Selker J, Pfister L, Uhlenbrook S (2007) A distributed stream temperature model using high resolution temperature observations. Hydrol Earth Syst Sci 11:1469–1480CrossRef Westhoff M, Savenije H, Luxemburg W, Stelling G, Van de Giesen N, Selker J, Pfister L, Uhlenbrook S (2007) A distributed stream temperature model using high resolution temperature observations. Hydrol Earth Syst Sci 11:1469–1480CrossRef
Zurück zum Zitat Yussuff SM, Chauhan H, Kumar M, Srivastava V (1994) Transient canal seepage to sloping aquifer. J Irrig Drain Eng 120:97–109CrossRef Yussuff SM, Chauhan H, Kumar M, Srivastava V (1994) Transient canal seepage to sloping aquifer. J Irrig Drain Eng 120:97–109CrossRef
Metadaten
Titel
Using basic metrics to analyze high-resolution temperature data in the subsurface
verfasst von
Margaret Shanafield
James L. McCallum
Peter G. Cook
Saskia Noorduijn
Publikationsdatum
04.04.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Hydrogeology Journal / Ausgabe 5/2017
Print ISSN: 1431-2174
Elektronische ISSN: 1435-0157
DOI
https://doi.org/10.1007/s10040-017-1578-0

Weitere Artikel der Ausgabe 5/2017

Hydrogeology Journal 5/2017 Zur Ausgabe