Skip to main content

2015 | OriginalPaper | Buchkapitel

7. Valorization of Liquid End-Residues of H2 Production by Microbial Fuel Cell

verfasst von : Bernardo Ruggeri, Tonia Tommasi, Sara Sanfilippo

Erschienen in: BioH2 & BioCH4 Through Anaerobic Digestion

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microbial fuel cell (MFC) technology can be employed in order to add value to the metabolic products of acetogenesis fermentation after H2 production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.C. Hallenbeck, Fermentative hydrogen production: principles, progress and prognosis. Int. J. Hydrogen Energy 34, 7379–7389 (2009)CrossRef P.C. Hallenbeck, Fermentative hydrogen production: principles, progress and prognosis. Int. J. Hydrogen Energy 34, 7379–7389 (2009)CrossRef
2.
Zurück zum Zitat K. Nath, M. Muthukumar, A. Kumar, D. Das, Kinetics of two-stage fermentation process for the production of hydrogen. Int. J. Hydrogen Energy 33, 1195–1203 (2008)CrossRef K. Nath, M. Muthukumar, A. Kumar, D. Das, Kinetics of two-stage fermentation process for the production of hydrogen. Int. J. Hydrogen Energy 33, 1195–1203 (2008)CrossRef
3.
Zurück zum Zitat S. Hoekema, R.D. Douma, M. Janssen, J. Tramper, R.H. Wijffels, Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Biotechnol. Bioeng. 95(4), 613–626 (2006)CrossRef S. Hoekema, R.D. Douma, M. Janssen, J. Tramper, R.H. Wijffels, Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Biotechnol. Bioeng. 95(4), 613–626 (2006)CrossRef
4.
Zurück zum Zitat B. Logan, Microbial Fuel Cells (Wiley, Hoboken, 2008) B. Logan, Microbial Fuel Cells (Wiley, Hoboken, 2008)
5.
Zurück zum Zitat P. Clauwaert, Electrodes as electron donors for microbial reduction processes. Ph.D. thesis, Ghent University, Belgium (2009) P. Clauwaert, Electrodes as electron donors for microbial reduction processes. Ph.D. thesis, Ghent University, Belgium (2009)
6.
Zurück zum Zitat P. Clauwaert, W. Verstraete, Methanogenesis in membraneless microbial electrolysis cells. Appl. Microbiol. Biotechnol. 82, 829–836 (2008)CrossRef P. Clauwaert, W. Verstraete, Methanogenesis in membraneless microbial electrolysis cells. Appl. Microbiol. Biotechnol. 82, 829–836 (2008)CrossRef
7.
Zurück zum Zitat A. Veit, M. Kalim Akhtar, T. Mizutani, P.R. Jones, Constructing and testing the thermodynamic limits of synthetic NAD[P]H: H2 pathways. Microb. Biotechnol. 1(5), 382–394 (2008) A. Veit, M. Kalim Akhtar, T. Mizutani, P.R. Jones, Constructing and testing the thermodynamic limits of synthetic NAD[P]H: H2 pathways. Microb. Biotechnol. 1(5), 382–394 (2008)
8.
Zurück zum Zitat R. Arechederra, S.D. Minteer, Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes. Electrochim. Acta 53, 6698–6703 (2008)CrossRef R. Arechederra, S.D. Minteer, Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes. Electrochim. Acta 53, 6698–6703 (2008)CrossRef
9.
Zurück zum Zitat A. Heller, Miniature biofuel cells. Phys. Chem. Chem. Phys. 6, 209–216 (2004)CrossRef A. Heller, Miniature biofuel cells. Phys. Chem. Chem. Phys. 6, 209–216 (2004)CrossRef
10.
Zurück zum Zitat J. Kim, H. Jia, P. Wang, Challenges in biocatalysts for enzyme-based biofuel cells. Biotechnol. Adv. 24, 296–308 (2006)CrossRef J. Kim, H. Jia, P. Wang, Challenges in biocatalysts for enzyme-based biofuel cells. Biotechnol. Adv. 24, 296–308 (2006)CrossRef
11.
Zurück zum Zitat N. Mano, F. Mao, A. Heller, ‘Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125, 6588–6595 (2003) N. Mano, F. Mao, A. Heller, Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125, 6588–6595 (2003)
12.
Zurück zum Zitat B.E. Logan, B. Homelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aeterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40(17), 5181–5192 (2006)CrossRef B.E. Logan, B. Homelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aeterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40(17), 5181–5192 (2006)CrossRef
13.
Zurück zum Zitat T. Tommasi, B. Ruggeri, S. Sanfilippo, Energy valorization of residues of dark anaerobic production of hydrogen. J. Clean. Prod. 34, 91–97 (2012)CrossRef T. Tommasi, B. Ruggeri, S. Sanfilippo, Energy valorization of residues of dark anaerobic production of hydrogen. J. Clean. Prod. 34, 91–97 (2012)CrossRef
14.
Zurück zum Zitat P. Aelterman, K. Rabaey, P. Clauwaert, W. Verstraete, Microbial fuel cell for wastewater treatment. Water Sci. Technol. 54, 9–15 (2006)CrossRef P. Aelterman, K. Rabaey, P. Clauwaert, W. Verstraete, Microbial fuel cell for wastewater treatment. Water Sci. Technol. 54, 9–15 (2006)CrossRef
15.
Zurück zum Zitat S. Venkata Mohan, S. Srikanth, G. Velvizhi, M. Lenin Babu, in Chapter 14: Microbial Fuel Cells for Sustainable Bioenergy Generation: Principles and Perspective Applications, ed. by V.K. Gupta, M.G. Tuohy. Biofuel Technologies (Springer, Heidelberg, 2013), pp. 335–368 S. Venkata Mohan, S. Srikanth, G. Velvizhi, M. Lenin Babu, in Chapter 14: Microbial Fuel Cells for Sustainable Bioenergy Generation: Principles and Perspective Applications, ed. by V.K. Gupta, M.G. Tuohy. Biofuel Technologies (Springer, Heidelberg, 2013), pp. 335–368
16.
Zurück zum Zitat U. Schröder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9, 2619–2629 (2007)CrossRef U. Schröder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9, 2619–2629 (2007)CrossRef
17.
Zurück zum Zitat P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40, 3388–3394 (2006)CrossRef P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40, 3388–3394 (2006)CrossRef
18.
Zurück zum Zitat P. Aelterman, K. Rabaey, L. De Schamphelaire, P. Clauwaert, N. Boon, W. Verstraete, in Microbial Fuel Cell as an Engineered Ecosystem, ed. by J. Wall, C.S. Harwood, A.L. Demain. Bioenergy (ASM, Washington DC, 2008), pp. 307–320 P. Aelterman, K. Rabaey, L. De Schamphelaire, P. Clauwaert, N. Boon, W. Verstraete, in Microbial Fuel Cell as an Engineered Ecosystem, ed. by J. Wall, C.S. Harwood, A.L. Demain. Bioenergy (ASM, Washington DC, 2008), pp. 307–320
19.
Zurück zum Zitat B.E. Logan, J.M. Regan, Microbial challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006)CrossRef B.E. Logan, J.M. Regan, Microbial challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006)CrossRef
20.
Zurück zum Zitat D.R. Lovley, Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4, 497–508 (2006)CrossRef D.R. Lovley, Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4, 497–508 (2006)CrossRef
21.
Zurück zum Zitat K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004)CrossRef K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004)CrossRef
22.
Zurück zum Zitat G.T. Kim, M.S. Hyun, I.S. Chang, H.J. Kim, H.S. Park, B.H. Kim, S.D. Kim, J.W.T. Wimpenny, A.J. Weightman, Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99, 978–987 (2005)CrossRef G.T. Kim, M.S. Hyun, I.S. Chang, H.J. Kim, H.S. Park, B.H. Kim, S.D. Kim, J.W.T. Wimpenny, A.J. Weightman, Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99, 978–987 (2005)CrossRef
23.
Zurück zum Zitat P. Aelterman, Microbial fuel cells for the treatment of waste streams with energy recovery. Ph.D. thesis, Gent University Belgium (2009) P. Aelterman, Microbial fuel cells for the treatment of waste streams with energy recovery. Ph.D. thesis, Gent University Belgium (2009)
24.
Zurück zum Zitat D. Hidalgo, T. Tommasi, V. Cauda, S. Porro, A. Chiodoni, K. Bejtka, B. Ruggeri, Streamlining of commercial Berl saddles: a new material to improve the performance of microbial fuel cells. Energy 71, 615–623 (2014)CrossRef D. Hidalgo, T. Tommasi, V. Cauda, S. Porro, A. Chiodoni, K. Bejtka, B. Ruggeri, Streamlining of commercial Berl saddles: a new material to improve the performance of microbial fuel cells. Energy 71, 615–623 (2014)CrossRef
25.
Zurück zum Zitat J.B. Benziger, M.B. Satterfield, W.H.J. Hogarth, J.P. Nehlsen, I.G. Kevrekidis, The power performance curve for engineering analysis of fuel cells. J. Power Sources 155, 272–285 (2006)CrossRef J.B. Benziger, M.B. Satterfield, W.H.J. Hogarth, J.P. Nehlsen, I.G. Kevrekidis, The power performance curve for engineering analysis of fuel cells. J. Power Sources 155, 272–285 (2006)CrossRef
26.
Zurück zum Zitat P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition and distribution of internal resistance in three types of microbial fuel cells. Appl. Microbiol. Biotechnol. 77, 551–558 (2007)CrossRef P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition and distribution of internal resistance in three types of microbial fuel cells. Appl. Microbiol. Biotechnol. 77, 551–558 (2007)CrossRef
27.
Zurück zum Zitat P. Clauwaert, P. Aelterman, T.H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey, W. Verstraete, Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 79, 901–913 (2008)CrossRef P. Clauwaert, P. Aelterman, T.H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey, W. Verstraete, Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 79, 901–913 (2008)CrossRef
28.
Zurück zum Zitat P. Aelterman, M. Versichele, M. Marzorati, N. Boon, W. Verstraete, Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 99, 8895–8902 (2008)CrossRef P. Aelterman, M. Versichele, M. Marzorati, N. Boon, W. Verstraete, Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 99, 8895–8902 (2008)CrossRef
29.
Zurück zum Zitat T. Tommasi, A. Chiolerio, M. Crepaldi, D. Demarchi, A microbial fuel cell powering an all-digital piezoresistive wireless sensor system. Microsyst. Technol. 20, 1023–1033 (2014)CrossRef T. Tommasi, A. Chiolerio, M. Crepaldi, D. Demarchi, A microbial fuel cell powering an all-digital piezoresistive wireless sensor system. Microsyst. Technol. 20, 1023–1033 (2014)CrossRef
30.
Zurück zum Zitat R.A. Rozendal, H.V.M. Vamelers, C.J.N. Buisman, Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 40, 5206–5211 (2006)CrossRef R.A. Rozendal, H.V.M. Vamelers, C.J.N. Buisman, Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 40, 5206–5211 (2006)CrossRef
31.
Zurück zum Zitat D. Call, B.E. Logan, Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ. Sci. Technol. 42, 3401–3406 (2008)CrossRef D. Call, B.E. Logan, Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ. Sci. Technol. 42, 3401–3406 (2008)CrossRef
32.
Zurück zum Zitat P. Aelterman, K. Rabaey, P. Clauwaert, W Verstraete, Microbial fuel cells for wastewater treatment, Water Sci. Technol. 54(8), 9–15 (2006) P. Aelterman, K. Rabaey, P. Clauwaert, W Verstraete, Microbial fuel cells for wastewater treatment, Water Sci. Technol. 54(8), 9–15 (2006)
Metadaten
Titel
Valorization of Liquid End-Residues of H2 Production by Microbial Fuel Cell
verfasst von
Bernardo Ruggeri
Tonia Tommasi
Sara Sanfilippo
Copyright-Jahr
2015
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-6431-9_7