Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 6/2014

01.06.2014

Variation in Mechanical Properties and Heterogeneity in Microstructure of High-Strength Ferritic Steel During Mill Trial

verfasst von: M. Ghosh, K. Barat, S. K. Das, B. Ravi Kumar, A. K. Pramanick, J. Chakraborty, G. Das, S. Hadas, S. Bharathy, S. K. Ray

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

HS600 and HS800 are two new generation, high-strength advanced ferritic steels that find widespread application in automobiles. During commercial production of the same grades with different thicknesses, it has been found that mechanical properties like tensile strength and stretchability varied widely and became inconsistent. In the current endeavor, two different thicknesses have been chosen from a mill trial sample of HS600 and HS800. An in-depth structural characterization was carried out for all four alloys to explain the variation in their respective mechanical and shear punch properties. The carbon content was smaller and Ti + Mo quantity was higher in case of HS800 with respect to HS600. The microstructure of both steels consisted of the dispersion of (Ti,Mo)C in a ferrite matrix. The grain size of HS800 was little larger than HS600 due to an increased coiling temperature (CT) of the former in comparison to the latter. It was found that in case of same grade of steel with a different thickness, a variation in microstructure occurred due to change in strain, CT, and cooling rate. The strength and stretch formability of these two alloys were predominantly governed by a microalloyed carbide. In this respect, carbides with a size range above 5 nm were responsible for loosing coherency with ferrite matrix. In case of HS600, both ≤5 and >5-nm size (Ti,Mo)C precipitates shared a nearly equal fraction of microalloyed precipitates. However, for HS800, >5-nm size (Ti,Mo)C carbide was substantially higher than ≤5-nm size alloy carbides. The ultimate tensile strength and yield strength of HS800 was superior to that of HS600 owing to a higher quantity of microalloyed carbide with a decreased column width and interparticle distance. A higher degree of in-coherency of HS800 made the alloy prone to crack formation with low stretchability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Qualitative and quantitative microstructural analysis consisting of grain size, phase fraction, aspect ratio and other geometrical quantities.
 
Literatur
1.
Zurück zum Zitat H.W. Yen, C.Y. Chen, C.Y. Huang, and J.R. Yang: The 3 rd Int. Conf. on Adv. Struct. Steels, Gyeongju, Korea, 2006, pp. 400–405. H.W. Yen, C.Y. Chen, C.Y. Huang, and J.R. Yang: The 3 rd Int. Conf. on Adv. Struct. Steels, Gyeongju, Korea, 2006, pp. 400–405.
2.
Zurück zum Zitat W.B. Lee, S.G. Hong, C.G. Park, and S.H. Park: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1689–98.CrossRef W.B. Lee, S.G. Hong, C.G. Park, and S.H. Park: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1689–98.CrossRef
3.
Zurück zum Zitat T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, Maney Publishing, London, June 1997, pp. 54–81. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, Maney Publishing, London, June 1997, pp. 54–81.
4.
Zurück zum Zitat Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda: ISIJ Int., 2004, vol. 44, pp. 1945–51.CrossRef Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda: ISIJ Int., 2004, vol. 44, pp. 1945–51.CrossRef
5.
6.
Zurück zum Zitat K. Seto, Y. Funakawa, and S. Kaneko: JFE Tech. Rep., 2007, no. 10, pp. 19–25 K. Seto, Y. Funakawa, and S. Kaneko: JFE Tech. Rep., 2007, no. 10, pp. 19–25
7.
Zurück zum Zitat C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, and S.H. Wang: Mater. Sci. Eng. A, 2009, vol. 499, pp. 162–66.CrossRef C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, and S.H. Wang: Mater. Sci. Eng. A, 2009, vol. 499, pp. 162–66.CrossRef
8.
Zurück zum Zitat J. Calvo, I.H. Jung, A.M. Elwazri, D. Bai, and S. Yue: Mater. Sci. Eng. A, 2009, vol. 520, pp. 90–96.CrossRef J. Calvo, I.H. Jung, A.M. Elwazri, D. Bai, and S. Yue: Mater. Sci. Eng. A, 2009, vol. 520, pp. 90–96.CrossRef
9.
Zurück zum Zitat X. Mao, X. Huo, X. Sun, and Y. Chai: J. Mater. Proc. Technol., 2010, vol. 210, pp. 1660–66.CrossRef X. Mao, X. Huo, X. Sun, and Y. Chai: J. Mater. Proc. Technol., 2010, vol. 210, pp. 1660–66.CrossRef
10.
Zurück zum Zitat H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang: Acta Mater., 2011, vol. 59, pp. 6264–74.CrossRef H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang: Acta Mater., 2011, vol. 59, pp. 6264–74.CrossRef
12.
Zurück zum Zitat P.J. Hurley and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 302, pp. 206–14.CrossRef P.J. Hurley and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 302, pp. 206–14.CrossRef
13.
Zurück zum Zitat G. Jha, S. Das, S. Sinha, A. Lodh, and A. Haldar: Mater. Sci. Eng. A, 2013, vol. 561, pp. 394–402.CrossRef G. Jha, S. Das, S. Sinha, A. Lodh, and A. Haldar: Mater. Sci. Eng. A, 2013, vol. 561, pp. 394–402.CrossRef
14.
Zurück zum Zitat Y. Kim, K. Im, Y.M. Cheong, and S.B. Ahn: J. Nucl. Mater., 2005, vol. 346, pp. 120–30.CrossRef Y. Kim, K. Im, Y.M. Cheong, and S.B. Ahn: J. Nucl. Mater., 2005, vol. 346, pp. 120–30.CrossRef
15.
Zurück zum Zitat S.S. Campos, E.V. Morales, and H.J. Kestenbach: Mater. Charact., 2004, vol. 52, pp. 379–84.CrossRef S.S. Campos, E.V. Morales, and H.J. Kestenbach: Mater. Charact., 2004, vol. 52, pp. 379–84.CrossRef
16.
Zurück zum Zitat G.E. Lucas, J.W. Sheckherd, G.R. Odett, and S. Panchanadeeswaran: J. Nucl. Mater., 1984, vol. 122, pp. 429–34.CrossRef G.E. Lucas, J.W. Sheckherd, G.R. Odett, and S. Panchanadeeswaran: J. Nucl. Mater., 1984, vol. 122, pp. 429–34.CrossRef
17.
Zurück zum Zitat S. Acharya and K.K. Roy: Mater. Sci. Eng. A, 2013, vol. 565, pp. 405–13.CrossRef S. Acharya and K.K. Roy: Mater. Sci. Eng. A, 2013, vol. 565, pp. 405–13.CrossRef
18.
Zurück zum Zitat I.B. Timokhina, P.D. Hodgson, S.P. Ringer, R.K. Zheng, and E.V. Pereloma: Scripta Mater., 2007, vol. 56, pp. 601–604.CrossRef I.B. Timokhina, P.D. Hodgson, S.P. Ringer, R.K. Zheng, and E.V. Pereloma: Scripta Mater., 2007, vol. 56, pp. 601–604.CrossRef
19.
Zurück zum Zitat M.B. Toloczko, M.L. Hamilton, and G.E. Lucas: J. Nucl. Mater., 2000, vols. 283–287, pp. 987–91CrossRef M.B. Toloczko, M.L. Hamilton, and G.E. Lucas: J. Nucl. Mater., 2000, vols. 283–287, pp. 987–91CrossRef
20.
Zurück zum Zitat T. Shimidzu, Y. Funakawa, and S. Kaneko: JFE Technical Report No. 4, 2004, pp. 25–31. T. Shimidzu, Y. Funakawa, and S. Kaneko: JFE Technical Report No. 4, 2004, pp. 25–31.
21.
Zurück zum Zitat Y.F. Shen, C.M. Wang, and X. Sun: Mater. Sci. Eng. A, 2011, vol. A528, pp. 8150–56.CrossRef Y.F. Shen, C.M. Wang, and X. Sun: Mater. Sci. Eng. A, 2011, vol. A528, pp. 8150–56.CrossRef
22.
Zurück zum Zitat C.Y. Chen and J.R. Yang: National Taiwan University, Taipei, Taiwan, unpublished research, 2007, p. 13. C.Y. Chen and J.R. Yang: National Taiwan University, Taipei, Taiwan, unpublished research, 2007, p. 13.
23.
Zurück zum Zitat P.J. Hurley and P.D. Hodgson: Mater. Sci. Technol., 2001, vol. 17, pp. 1360–67.CrossRef P.J. Hurley and P.D. Hodgson: Mater. Sci. Technol., 2001, vol. 17, pp. 1360–67.CrossRef
24.
Zurück zum Zitat M.R. Hickson, P.J. Hurley, R.K. Gibbs, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1019–26.CrossRef M.R. Hickson, P.J. Hurley, R.K. Gibbs, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1019–26.CrossRef
26.
Zurück zum Zitat H.W. Yen, C.Y. Huang, and J.R. Yang: Scripta Mater., 2009, vol. 61, pp. 616–19.CrossRef H.W. Yen, C.Y. Huang, and J.R. Yang: Scripta Mater., 2009, vol. 61, pp. 616–19.CrossRef
27.
Zurück zum Zitat J.S. Park, Y.S. Ha, S.J. Lee, and Y.K. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 560–68.CrossRef J.S. Park, Y.S. Ha, S.J. Lee, and Y.K. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 560–68.CrossRef
28.
Zurück zum Zitat S.G. Hong, K.B. Kang, and C.J. Park: Scripta Mater., 2002, vol. 46, pp. 163–68.CrossRef S.G. Hong, K.B. Kang, and C.J. Park: Scripta Mater., 2002, vol. 46, pp. 163–68.CrossRef
Metadaten
Titel
Variation in Mechanical Properties and Heterogeneity in Microstructure of High-Strength Ferritic Steel During Mill Trial
verfasst von
M. Ghosh
K. Barat
S. K. Das
B. Ravi Kumar
A. K. Pramanick
J. Chakraborty
G. Das
S. Hadas
S. Bharathy
S. K. Ray
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 6/2014
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-014-2226-0

Weitere Artikel der Ausgabe 6/2014

Metallurgical and Materials Transactions A 6/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.